Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bremer, Leon

  • Google
  • 2
  • 3
  • 21

University of Twente

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Design and implementation of dynamic beam shaping in high power laser processing by means of a Deformable Mirror5citations
  • 2023Laser intensity profile as a means to steer microstructure of deposited tracks in Directed Energy Deposition16citations

Places of action

Chart of shared publication
Römer, Gert-Willem
2 / 15 shared
Aarts, Ronald
1 / 4 shared
Luckabauer, Martin
1 / 19 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Römer, Gert-Willem
  • Aarts, Ronald
  • Luckabauer, Martin
OrganizationsLocationPeople

article

Laser intensity profile as a means to steer microstructure of deposited tracks in Directed Energy Deposition

  • Luckabauer, Martin
  • Bremer, Leon
  • Römer, Gert-Willem
Abstract

<p>In Laser-based Directed Energy Deposition (L-DED) the laser-induced spatial and temporal thermal cycles strongly determine the microstructure of deposited layers. The effect of three different laser intensity profiles (beam shapes) on the shape of the melt pool and the resulting microstructure was studied. To this end, thermal gradients and growth rates, derived from measured melt pool emissions, are compared to characteristics of the microstructure in the deposited tracks. These characteristics are obtained using Electron Back Scatter Diffraction (EBSD). It was found that the shape of the laser beam strongly affects the melt pool morphology. Therefore it affects also the solidification characteristics and thus the resulting microstucture. Correlations are found between the thermal gradient - growth rate ratios and the grain shapes and amount of texture. Hence, the beam profile is a tool to steer the microstructure of deposited parts during L-DED.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • morphology
  • grain
  • melt
  • texture
  • electron backscatter diffraction
  • directed energy deposition
  • solidification