Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Minkowitz, Lisa

  • Google
  • 2
  • 4
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Microstructure, tensile strength, and hardness of AA5024 modified with ZrH4 additions produced by laser powder bed fusioncitations
  • 2023Laser-powder bed fusion process optimisation of AlSi10Mg using extra trees regression16citations

Places of action

Chart of shared publication
Sergio, T. Amancio-Filho
2 / 61 shared
Buzolin, Ricardo Henrique
1 / 54 shared
Arneitz, Siegfried
2 / 5 shared
Effertz, Pedro
1 / 6 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Sergio, T. Amancio-Filho
  • Buzolin, Ricardo Henrique
  • Arneitz, Siegfried
  • Effertz, Pedro
OrganizationsLocationPeople

article

Laser-powder bed fusion process optimisation of AlSi10Mg using extra trees regression

  • Sergio, T. Amancio-Filho
  • Effertz, Pedro
  • Arneitz, Siegfried
  • Minkowitz, Lisa
Abstract

Aluminium alloys have a wide range of applications, especially in the fields of aviation and aerospace. Near net-shape parts with a great structural complexity can be produced using additive manufacturing techniques. However, understanding the Laser-Powder Bed Fusion (L-PBF) process itself and the correlations between different process parameters and the mechanical properties is often very challenging. In order to achieve insights into the whole printing process, statistical tools such as Designs Of Experiment (DoE) are usually applied. In this study, we examined the additive manufacturing of AlSi10Mg, a well-studied aluminium alloy used for L-PBF, and the modelling of its printing process by applying machine learning. The influences of different printing parameters (i.e. laser power, laser spot size, hatching distance, layer height and scanning speed) on the mechanical properties (i.e. density, tensile strength and hardness) were examined by generating different machine learning models based on data obtained with DoE and additional experiments. The best performing models were evaluated regarding the printing process and the respective testing procedures used to measure the mechanical properties. Mean coefficients of determination ranging from 56.44% to 98.54% were achieved. Finally, a processing window for producing dense samples with high tensile strengths and high hardness values was found.

Topics
  • density
  • impedance spectroscopy
  • experiment
  • aluminium
  • strength
  • aluminium alloy
  • hardness
  • selective laser melting
  • tensile strength
  • machine learning