People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lopes, João G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Evolution of microstructure and deformation mechanisms in a metastable Fe42Mn28Co10Cr15Si5 high entropy alloycitations
- 2024Unveiling the microstructure evolution and mechanical properties in a gas tungsten arc-welded Fe–Mn–Si–Cr–Ni shape memory alloycitations
- 2024In-situ microstructural evolution during tensile loading of CoCrFeMnNi high entropy alloy welded joint probed by high energy synchrotron X-ray diffraction
- 2024Revealing microstructural evolution and mechanical properties of resistance spot welded NiTi-stainless steel with Ni or Nb interlayercitations
- 2024Wire arc additive manufacturing of a high-strength low-alloy steel part: environmental impacts, costs, and mechanical propertiescitations
- 2024Wire arc additive manufacturing of a high-strength low-alloy steel part ; environmental impacts, costs, and mechanical propertiescitations
- 2024Microstructure gradients across the white etching and transition layers of a heavy haul pearlitic steelcitations
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloycitations
- 2023Deformation behavior and strengthening effects of an eutectic AlCoCrFeNi2.1 high entropy alloy probed by in-situ synchrotron X-ray diffraction and post-mortem EBSDcitations
- 2023Evolution of microstructure and mechanical properties in gas tungsten arc welded dual-phase Fe50Mn30Co10Cr10 high entropy alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2022Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steelcitations
- 2022Improving the ductility in laser welded joints of CoCrFeMnNi high entropy alloy to 316 stainless steelcitations
- 2022The influence of in-situ alloying of electro-spark deposited coatings on the multiscale morphological and mechanical properties of laser welded Al–Si coated 22MnB5citations
- 2020Effect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM)citations
- 2020Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloycitations
Places of action
Organizations | Location | People |
---|
article
Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy
Abstract
JS, JGL and JPO acknowledge Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/00667/2020 (UNIDEMI). JS acknowledges the China Scholarship Council for funding the Ph.D. grant (CSC NO. 201808320394). JGL acknowledges FCT – MCTES for funding the Ph.D. grant 2020.07350.BD. Publisher Copyright: © 2022 The Authors ; The AlCoCrFeNi2.1 eutectic high entropy alloy is of great interest due to its unique mechanical properties combining both high strength and plasticity. Here, gas tungsten arc welding was performed for the first time on an as-cast AlCoCrFeNi2.1 alloy. The microstructural evolution of the welded joints was assessed by combining electron microscopy with electron backscatter diffraction, synchrotron X-ray diffraction analysis and thermodynamic calculations. Microhardness mapping and tensile testing coupled with digital image correlation were used to investigate the strength distribution across the joint. The base material, heat affected zone and fusion zone are composed of an FCC + B2 BCC eutectic structure, although the relative volume fractions vary across the joint owing to the weld thermal cycle. The BCC nanoprecipitates that existed in the base material started to dissolve into the matrix in the heat affected zone and closer to the fusion zone boundary. Compared to the as-cast base material, the fusion zone evidenced grain refinement owing to the higher cooling rate experienced during solidification. This translates into an increased hardness in this region. The joints exhibit good strength/ductility balance with failure occurring in the base material. This work establishes the potential for using arc-based welding for joining eutectic high entropy alloys. ; publishersversion ; published