People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigues, Tiago A.
Instituto de Soldadura e Qualidade
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloycitations
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe$_{42}$Mn$_{28}$Co$_{10}$Cr$_{15}$Si$_5$ metastable high entropy alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2022Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)citations
- 2022In-situ hot forging direct energy deposition-arc of CuAl8 alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi$_{2.1}$ eutectic high entropy alloycitations
- 2022In-situ hot forging directed energy deposition-arc of CuAl8 alloycitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material ; Development and characterizationcitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded materialcitations
- 2021Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steelcitations
- 2021Wire and Arc Additive Manufacturing of High-Strength Low-Alloy Steelcitations
- 2021Benchmarking of Nondestructive Testing for Additive Manufacturingcitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysiscitations
- 2021Wire and Arc Additive Manufacturing of High‐Strength Low‐Alloy Steel: Microstructure and Mechanical Propertiescitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysiscitations
- 2020In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM)citations
- 2020Hot forging wire and arc additive manufacturing (HF-WAAM)citations
- 2020Effect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM)citations
- 2019Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical propertiescitations
- 2019Large-dimension metal parts produced through laser powder bed fusion
Places of action
Organizations | Location | People |
---|
article
Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy
Abstract
JS, JGL and JPO acknowledge Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/00667/2020 (UNIDEMI). JS acknowledges the China Scholarship Council for funding the Ph.D. grant (CSC NO. 201808320394). JGL acknowledges FCT – MCTES for funding the Ph.D. grant 2020.07350.BD. Publisher Copyright: © 2022 The Authors ; The AlCoCrFeNi2.1 eutectic high entropy alloy is of great interest due to its unique mechanical properties combining both high strength and plasticity. Here, gas tungsten arc welding was performed for the first time on an as-cast AlCoCrFeNi2.1 alloy. The microstructural evolution of the welded joints was assessed by combining electron microscopy with electron backscatter diffraction, synchrotron X-ray diffraction analysis and thermodynamic calculations. Microhardness mapping and tensile testing coupled with digital image correlation were used to investigate the strength distribution across the joint. The base material, heat affected zone and fusion zone are composed of an FCC + B2 BCC eutectic structure, although the relative volume fractions vary across the joint owing to the weld thermal cycle. The BCC nanoprecipitates that existed in the base material started to dissolve into the matrix in the heat affected zone and closer to the fusion zone boundary. Compared to the as-cast base material, the fusion zone evidenced grain refinement owing to the higher cooling rate experienced during solidification. This translates into an increased hardness in this region. The joints exhibit good strength/ductility balance with failure occurring in the base material. This work establishes the potential for using arc-based welding for joining eutectic high entropy alloys. ; publishersversion ; published