Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Petrosyan, Aram

  • Google
  • 2
  • 9
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Polyiodides of amino acids. Betainium triiodide4citations
  • 2022Above-room-temperature ferroelectricity and piezoelectric activity of dimethylglycinium-dimethylglycine chloride12citations

Places of action

Chart of shared publication
Szafrański, Marek
2 / 23 shared
Giester, Gerald
1 / 11 shared
Tonoyan, Gayane
1 / 1 shared
Ghazaryan, Vahram V.
1 / 1 shared
Zatikyan, Ashkhen L.
1 / 1 shared
Wiesner, Maciej
1 / 7 shared
Tylczyński, Zbigniew
1 / 4 shared
Czarnecki, Piotr
1 / 18 shared
Ghazaryan, Vahram
1 / 1 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Szafrański, Marek
  • Giester, Gerald
  • Tonoyan, Gayane
  • Ghazaryan, Vahram V.
  • Zatikyan, Ashkhen L.
  • Wiesner, Maciej
  • Tylczyński, Zbigniew
  • Czarnecki, Piotr
  • Ghazaryan, Vahram
OrganizationsLocationPeople

article

Above-room-temperature ferroelectricity and piezoelectric activity of dimethylglycinium-dimethylglycine chloride

  • Szafrański, Marek
  • Wiesner, Maciej
  • Tylczyński, Zbigniew
  • Petrosyan, Aram
  • Czarnecki, Piotr
  • Ghazaryan, Vahram
Abstract

Heavy-metal-free ferroelectrics are sought as environmentally compatible alternatives to commonly used inorganic oxides. Here, we demonstrate direct evidence of the ferroelectric properties of a hybrid organic–inorganic material, dimethylglycinium-dimethylglycine chloride. At room temperature, the compound crystallizes in the polar space group P21 and exhibits a switchable spontaneous polarization of 1.9 μC cm−2. Ferroelectric properties are preserved in a wide temperature range up to about 401 K, where the crystal undergoes the transition to the paraelectric phase of the space group P21/c. The temperature-dependent single-crystal X-ray diffraction study and the calorimetric data indicate an order–disorder contribution to the transition mechanism, which is consistent with the critical slowing down of the dielectric relaxation observed near the Curie point. The spontaneous polarization results from ionic displacements that are induced by changes in the disordering of the dimeric cations. In the ferroelectric phase, the crystal exhibits remarkable piezoelectric activity. The electromechanical and elastic properties of the material were thoroughly characterized.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • x-ray diffraction
  • space group