People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burtscher, Michael
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Micro-Mechanical Fracture Investigations on Grain Size Tailored Tungsten-Copper Nanocompositescitations
- 2024Mechanical processing and thermal stability of the equiatomic high entropy alloy TiVZrNbHf under vacuum and hydrogen pressurecitations
- 2023Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloycitations
- 2023Deformation and failure behavior of nanocrystalline WCucitations
- 2023Precipitation behavior of hexagonal carbides in a C containing intermetallic γ-TiAl based alloycitations
- 2023From unlikely pairings to functional nanocomposites: FeTi–Cu as a model systemcitations
- 2023On the stability of Ti(Mn,Al)2 C14 Laves phase in an intermetallic Ti–42Al–5Mn alloycitations
- 2023On the stability of Ti(Mn,Al)$_2$ C14 Laves phase in an intermetallic Ti–42Al–5Mn alloycitations
- 2022In situ micromechanical analysis of a nano-crystalline W-Cu compositecitations
- 2022Oxidation resistance of cathodic arc evaporated Cr$_{0.74}$Ta$_{0.26}$N coatingscitations
- 2021High-Temperature Nanoindentation of an Advanced Nano-Crystalline W/Cu Compositecitations
- 2020In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloycitations
- 2020An Advanced TiAl Alloy for High-Performance Racing Applicationscitations
- 2019The creep behavior of a fully lamellar γ-TiAl based alloycitations
Places of action
Organizations | Location | People |
---|
article
In situ micromechanical analysis of a nano-crystalline W-Cu composite
Abstract
W-Cu composites are commonly used as heat-sinks or high-performance switches in power electronics. To enhance their mechanical properties and mutually their usability, grain refinement of the initially coarse-grained microstructure was realized using high–pressure torsion. This leads to different microstructural conditions, exhibiting fine-, ultrafine-grained or nanocrystalline microstructures. Scanning as well as transmission electron microscopy was performed to analyze the respective grain size and microstructures. The hardness and Young’s modulus of the deformed specimens were quantified by nanoindentation testing. Furthermore, X–ray diffraction indicated a decreased grain size and changed lattice spacings upon increasing the deformation ratio. The deformed specimens were tested for their fracture behaviour by continuous stiffness measurements during in-situ microcantilever bending experiments. Here, mean J–integral values of 288 ± 38 J/m2 and 402 ± 89 J/m2 were determined for the 5 and 50 times turned specimens, respectively. The combination of different characterization methods applied on a W–Cu composite allows to identify both, beneficial and unfavourable microstructural components regarding the fracture properties.