People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stanley, Walter F.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Mechanical, dynamic-mechanical and wear performance of novel non-crimp glass fabric-reinforced liquid thermoplastic composites filled with cellulose microcrystals
Abstract
<p>The novel reactive methylmethacrylate (MMA) thermoplastic resin (commercially known as Elium® resin) is the first liquid thermoplastic resin which is curable at room temperature. This resin is a competitive solution against traditional epoxy-based composites. In this work, novel non-crimp (NC) glass fabric/MMA resin composites were manufactured using a vacuum infusion process. Cellulose microcrystals (CMCs) were dispersed in the resin to improve the fibre/matrix interface and the composite properties. CMCs were first dispersed in the resin using an ultrasonication process and then the CMC/MMA resin suspension, mixed with a peroxide initiator, was infused into the reinforcing fabric. The amounts of CMCs dispersed in the resin were 0.5%, 1% and 2% (of the weight of the resin). The influence of CMCs on the interlaminar shear strength (interface), flexural properties, abrasive wear and dynamic-mechanical behaviour was thoroughly investigated. From the mechanical characterisation, it was observed that the addition of 1% CMC to the NC glass/MMA resin composites improved the flexural strength, interlaminar shear strength and wear performance by 30.77%, 38.04% and 22.27%, respectively as compared to the neat glass/MMA resin composite. Above this amount of CMC (i.e., 1 wt%), the properties started to degrade as a result of CMC agglomeration.</p>