People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reynolds, Cd
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Design of slurries for 3D printing of sodium-ion battery electrodescitations
- 2023Methodology in quality control for electrode processingcitations
- 2022Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing processcitations
- 2022Rheology and structure of lithium‐ion battery electrode slurriescitations
- 2021Microstructural design of printed graphite electrodes for lithium-ion batteriescitations
Places of action
Organizations | Location | People |
---|
article
Microstructural design of printed graphite electrodes for lithium-ion batteries
Abstract
<p>Performance properties of lithium-ion battery electrodes; capacity, rate and lifetime, are determined by the design of the coating composite microstructure. The internal pore structure and electronic networks for high coat weight graphite electrodes are manipulated through changes in the ink rheological properties, and through an syringe dispensing printing process. The rheological properties of a water-based, high viscosity graphite ink were optimised using a secondary solvent for the rheological requirements of a syringe dispensing method. The microstructure of high coat-weight battery electrodes produced from printing and tape cast methods were compared and the electrochemical performance evaluated. Cross sectional analysis of the slurry cast coatings showed improved component homogeneity, lower graphite alignment with 0.1% to 10% weight increase of the secondary solvent, with a corresponding change in tortuosity of the electrodes of 5.3–2.8. Improved cycle life is observed with a printed electrode containing an embedded electrolyte channel. Performance properties were elucidated through charge discharge, GITT and PEIS measurements. Improved electronic conductivities, exchange currents and diffusion coefficients were observed for the syringe deposited electrode. This digital deposition process for manufacturing electrodes shows promise for further optimisation of electrodes for long-life, high energy density batteries.</p>