People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guan, Dikai
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Understanding process parameter-induced variability for tailoring precipitation behavior, grain structure, and mechanical properties of Al-Mg-Si-Mn alloy during solid-state additive manufacturingcitations
- 2023Triple and double twin interfaces in magnesium - the role of disconnections and facetscitations
- 2021The additive manufacture processing and machinability of CrMnFeCoNi high entropy alloycitations
- 2021Mobilities of Ti and Fe in disordered TiFe-BCC assessed from new experimental datacitations
- 2017Direct observation of precipitation along twin boundaries and dissolution in a magnesium alloy annealing at high temperaturecitations
- 2016On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloycitations
- 2015New compositional design for creating tough metallic glass composites with excellent work hardeningcitations
Places of action
Organizations | Location | People |
---|
article
The additive manufacture processing and machinability of CrMnFeCoNi high entropy alloy
Abstract
We report a study of the machining characteristics of a High Entropy Alloy, CrMnFeCoNi (Cantor's Alloy). The alloy in powder form is first used to Additively Manufacture a relatively large block by Selective Laser Melting. This block provides the material for a parametric study of the machining response in comparison to a reference AISI 304L stainless steel, both in terms of the surface finish obtained for different machining parameters, and the tool wear. It was found that the CrMnFeCoNi alloy has in fact better machinability than the AISI 304L stainless steel, and indications from the machined surface are that this is due to the plastic behaviour in this alloy, with good, but not excessive, strength, and significant ductility. While this behaviour may not be replicated in all HEAs, it shows that alloys with good machinability can be found in this class, and that early assessment of machinability can help guide alloy design activities.