Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kindermann, Renan Medeiros

  • Google
  • 3
  • 5
  • 150

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Wire-arc directed energy deposition of Inconel 718: Effects of heat input and build interruptions on mechanical performance15citations
  • 2022Effects of microstructural heterogeneity and structural defects on the mechanical behaviour of wire + arc additively manufactured Inconel 718 components43citations
  • 2020Process response of Inconel 718 to wire + arc additive manufacturing with cold metal transfer92citations

Places of action

Chart of shared publication
Prangnell, Philip
2 / 41 shared
Morana, Roberto
1 / 4 shared
Roy, Matthew
3 / 29 shared
Francis, John A.
2 / 23 shared
Morana, R.
2 / 9 shared
Chart of publication period
2023
2022
2020

Co-Authors (by relevance)

  • Prangnell, Philip
  • Morana, Roberto
  • Roy, Matthew
  • Francis, John A.
  • Morana, R.
OrganizationsLocationPeople

article

Process response of Inconel 718 to wire + arc additive manufacturing with cold metal transfer

  • Prangnell, Philip
  • Morana, R.
  • Roy, Matthew
  • Kindermann, Renan Medeiros
Abstract

Wire + arc additive manufacturing (WAAM) with cold metal transfer (CMT) process can reduce cost and lead time during the production of large-scale Ni-based components used in the transportation and energy sector. This paper investigates the effects of processing parameters and heat treatments employed on CMT-WAAM of a precipitation hardenable Ni-based alloy – Inconel 718. The process stability was analysed by electrical transients and melt pool imaging, showing an opposite trend to the measured heat inputs. A 1.2 mm diameter wire permitted deposition widths of 5.92–13.15 mm, but widths larger than ~10 mm decreased the arc stability considerably. Laves length and carbide diameter decreased with travel speed, while the as-deposited hardness increased. These observations permitted a linear wall to be fabricated with a minimal heat input per layer of 181–185 J/mm. An increase in the solution treatment temperature from 980 to 1040 °C reduced microsegregation, Laves and δ phase precipitation. Localised regions with high microhardness were found near interlayer regions due to a local dissolution of Nb-rich eutectic phases. Compared to powder-based additive manufacturing, CMT-WAAM IN718 exhibits a larger melt pool size and lower as-deposited hardness, but has been found to show satisfactory ageing response and similar Laves phase area fraction.

Topics
  • Deposition
  • microstructure
  • nickel
  • melt
  • carbide
  • hardness
  • precipitation
  • aging
  • wire
  • additive manufacturing
  • nickel alloy