People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mikkonen, Kirsi
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Protective role of wood hemicelluloses: Enhancing yeast probiotics survival in spray drying and storagecitations
- 2022Emulsion characterization via microfluidic devicescitations
- 2021Green Fabrication Approaches of Lignin Nanoparticles from Different Technical Ligninscitations
- 2020Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocompositescitations
- 2019The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acidscitations
- 2019Emulsifier composition of solid lipid nanoparticles (SLN) affects mechanical and barrier properties of SLN-protein composite filmscitations
- 2018Physicochemical and rheo-mechanical properties of titanium dioxide reinforced sage seed gum nanohybrid hydrogelcitations
- 2018Novel nanobiocomposite hydrogels based on sage seed gum-Laponite: Physico-chemical and rheological characterizationcitations
- 2017Synchrotron microtomography reveals the fine three-dimensional porosity of composite polysaccharide aerogelscitations
- 2017Spruce gum – a new natural Nordic stabilizer
- 2016Softwood-based sponge gelscitations
- 2010Comparison of microencapsulation properties of spruce galactoglucomannans and arabic gum using a model hydrophobic core compoundcitations
- 2008Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan, and konjac glucomannan
Places of action
Organizations | Location | People |
---|
article
Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites
Abstract
Fungal mycelia are versatile, highly productive and sustainable sources for biocomposites to replace conventional plastics. However, with only very few fungal strains that have been characterized, numerous strains still remain unexplored as potential competitors against traditional non-biodegradable materials. Moreover, the functionality of mycelium composites at commonly occurring, challenging ambient conditions such as changing humidity and temperature is not well characterized. Here we evaluated the properties of the fungal composite material produced by novel fungal strains, including Trichoderma asperellum and Agaricus bisporus, grown on oat husk and rapeseed cake after oil pressing. The results showed that the mycelium composites were hydrophobic and strong, particularly when grown on rapeseed cake. A. bisporus grown on rapeseed cake exhibited increased stiffness after humidity was successively increased and decreased. The moisture-resistance of these novel mycelium composites is encouraging for novel sustainable material solutions.