People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zdunek, Krzysztof
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2021Synthesis of Copper Nitride Layers by the Pulsed Magnetron Sputtering Method Carried out under Various Operating Conditionscitations
- 2020Design of pulsed neon injection in the synthesis of W-B-C films using magnetron sputtering from a surface-sintered single powder cathodecitations
- 2020Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputteringcitations
- 2019Plasmochemical investigations of DLC/WCx nanocomposite coatings synthesized by gas injection magnetron sputtering techniquecitations
- 2019Influence of annealing on electronic properties of thin AlN films deposited by magnetron sputtering method on silicon substratescitations
- 2018Relation between modulation frequency of electric power oscillation during pulse magnetron sputtering deposition of MoNx thin filmscitations
- 2018Phase composition of copper nitride coatings examined by the use of X-ray diffraction and Raman spectroscopycitations
- 2018Structure and electrical resistivity dependence of molybdenum thin films deposited by dc modulated pulsed magnetron sputteringcitations
- 2017Reactive sputtering of titanium compounds using the magnetron system with a grounded cathodecitations
- 2017Multi-sided metallization of textile fibres by using magnetron system with grounded cathodecitations
- 2016Determination of sp 3 fraction in ta-C coating using XPS and Raman spectroscopy
- 2016Titanium nitride coatings synthesized by IPD method with eliminated current oscillationscitations
- 2013Plasma etching of aluminum nitride thin films prepared by magnetron sputtering method
- 2010Structure of Fe-Cu coatings prepared by the magnetron sputtering method
- 2009Electric Characterization and Selective Etching of Aluminum Oxidecitations
Places of action
Organizations | Location | People |
---|
article
Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputtering
Abstract
A three-dimensional (3D) sintering method of bulk magnetron targets has been developed recently. However, the use of bulk target had the following limitations: constrained geometry, limited chemical-phase composition, small size and cost-effectiveness. Thus a novel approach of surface sintering (2D) was arranged by a method of electromagnetic discharge evolution without applying any mechanical press. In the proposed method, the internal energy of pulsed plasma flux (~102.3 J) was dissipated at a tungsten (W) powder interface, therefore providing a form of sintered body with a density of 9.24–14.21 g/cm3 in the crystal structure of (α)-W. The morphology view indicates that, for the most part of sinters, only a subsurface (< 100 nm) was well-consolidated, which was in accordance with an almost fourfold increase in thermal diffusivity there, as showed the results of laser flash analysis. Subsequently, the decrease in mean porosity distribution (Vv) from 42.4% to 27.1% in consolidated surface was confirmed by using the microcomputed tomography (μCT) reconstruction. The (2D) sintered target was then used in the synthesis of pure metallic films by gas injection magnetron sputtering. As a result, a conductive (β)-W phase was recognized (103–405 μΩ cm), giving a promising hope for spintronic device applications.