People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lachowski, Artur
Institute of High Pressure Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2021Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phasecitations
- 2021Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Investigation of MXenes Oxidation Process during SPS Method Annealingcitations
- 2021Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sinteringcitations
- 2020Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputteringcitations
- 2020Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramicscitations
- 2019Plasmochemical investigations of DLC/WCx nanocomposite coatings synthesized by gas injection magnetron sputtering techniquecitations
Places of action
Organizations | Location | People |
---|
article
Surface sintering of tungsten powder targets designed by electromagnetic discharge: A novel approach for film synthesis in magnetron sputtering
Abstract
A three-dimensional (3D) sintering method of bulk magnetron targets has been developed recently. However, the use of bulk target had the following limitations: constrained geometry, limited chemical-phase composition, small size and cost-effectiveness. Thus a novel approach of surface sintering (2D) was arranged by a method of electromagnetic discharge evolution without applying any mechanical press. In the proposed method, the internal energy of pulsed plasma flux (~102.3 J) was dissipated at a tungsten (W) powder interface, therefore providing a form of sintered body with a density of 9.24–14.21 g/cm3 in the crystal structure of (α)-W. The morphology view indicates that, for the most part of sinters, only a subsurface (< 100 nm) was well-consolidated, which was in accordance with an almost fourfold increase in thermal diffusivity there, as showed the results of laser flash analysis. Subsequently, the decrease in mean porosity distribution (Vv) from 42.4% to 27.1% in consolidated surface was confirmed by using the microcomputed tomography (μCT) reconstruction. The (2D) sintered target was then used in the synthesis of pure metallic films by gas injection magnetron sputtering. As a result, a conductive (β)-W phase was recognized (103–405 μΩ cm), giving a promising hope for spintronic device applications.