Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmadi, Masoud

  • Google
  • 8
  • 13
  • 131

ASML (Netherlands)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Analytical modelling of the electrical conductivity of CNT-filled polymer nanocomposites1citations
  • 2024Modelling piezoresistive behaviour in finitely deformed elastomeric compositescitations
  • 2022Outstanding cracking resistance in Mg-alloyed zinc coatings achieved via crystallographic texture control14citations
  • 2022The effect of grain refinement on the deformation and cracking resistance in Zn–Al–Mg coatings27citations
  • 2021Cracking behavior and formability of Zn-Al-Mg coatings23citations
  • 2021Cracking behavior and formability of Zn-Al-Mg coatings:Understanding the influence of steel substrates23citations
  • 2020Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatings24citations
  • 2019Microstructure and adhesion strength quantification of PVD bi-layered ZnMg-Zn coatings on DP800 steel19citations

Places of action

Chart of shared publication
Saxena, Prashant
1 / 5 shared
Kooi, Bart Jan
4 / 74 shared
Pei, Yutao T.
5 / 23 shared
Salgın, Bekir
4 / 4 shared
Kooi, Bart J.
1 / 29 shared
Pei, Yutao
1 / 13 shared
Salgin, Bekir
1 / 1 shared
Galinmoghaddam, E.
1 / 3 shared
Westerwaal, R. J.
1 / 12 shared
Hosson, Jeff Th. M. De
1 / 119 shared
Langkruis, J. Van De
1 / 2 shared
Zoestbergen, E.
1 / 7 shared
Sabooni, S.
1 / 4 shared
Chart of publication period
2024
2022
2021
2020
2019

Co-Authors (by relevance)

  • Saxena, Prashant
  • Kooi, Bart Jan
  • Pei, Yutao T.
  • Salgın, Bekir
  • Kooi, Bart J.
  • Pei, Yutao
  • Salgin, Bekir
  • Galinmoghaddam, E.
  • Westerwaal, R. J.
  • Hosson, Jeff Th. M. De
  • Langkruis, J. Van De
  • Zoestbergen, E.
  • Sabooni, S.
OrganizationsLocationPeople

article

Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatings

  • Salgin, Bekir
  • Kooi, Bart Jan
  • Pei, Yutao T.
  • Ahmadi, Masoud
Abstract

In-depth investigation of the microscale deformation behavior of ZnAlMg coatings is essential to reveal the origin and mechanism of cracking in these coatings. In this work anisotropic microstructural damage and cracking of multiphase Zn1.8Al1.8Mg alloy coatings produced by hot-dip galvanization process on a steel substrate have been studied extensively. Nanoindentation coupled with orientation image microscopy (OIM) is utilized to determine the local micro ductility/strength of the existing phases as well as the orientation dependent micromechanical properties of primary zinc grains. Plastic deformation and damage behavior of the coating are evaluated through in-situ tensile/bending tests, micro-digital image correlation and in-situ OIM analyses. Stress distribution fields and nucleation sites of cracks within the coating microstructure are investigated using extended finite element method. Three quantitative plastic deformation-based criteria are revealed to correlate the coating microstructure to micro-mechanical properties to comprehend the cracking phenomenon. In particular, the binary eutectic is identified as the most detrimental constituent for compatible plastic deformation. Local strain hardening exponent and Schmid factor of primary zinc grains are found to play a significant role in clarifying the cracking behavior. The results of this study are considered as an important step towards designing microstructure controlled ZnAlMg coatings with superior formability.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • grain
  • corrosion
  • phase
  • zinc
  • crack
  • strength
  • anisotropic
  • steel
  • nanoindentation
  • bending flexural test
  • texture
  • ductility
  • microscopy