People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stemper, Lukas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloyscitations
- 2024Influence of Solidification Rate and Impurity Content on 5/7-Crossover Alloys
- 2024Metallographic Etching of Al–Mg–Zn–(Cu) Crossover Alloyscitations
- 2023Industry-oriented sample preparation with an in- ductively heated laboratory continuous casting plant for aluminum alloys
- 2023Fine-grained aluminium crossover alloy for high-temperature sheet formingcitations
- 2021Crossover alloys
- 2021Giant hardening response in AlMgZn(Cu) alloyscitations
- 2020Prototypic Lightweight Alloy Design for Stellar-Radiation Environmentscitations
- 2020Age-hardening response of AlMgZn alloys with Cu and Ag additionscitations
- 2019Industry-oriented sample preparation of 6xxx and 5xxx aluminum alloys in laboratory scale
- 2019Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additionscitations
- 2017Modifizierte 5xxx-Aluminiumknetlegierungen für den Einsatz als Strukturgusswerkstoff in der Automobilindustrie
Places of action
Organizations | Location | People |
---|
article
Age-hardening of high pressure die casting AlMg alloys with Zn and combined Zn and Cu additions
Abstract
<p>This study investigates the age-hardening of AlMg alloys with Zn and combined Zn and Cu additions. Two AlMg5Mn1 alloys modified with Zn and Cu were processed by high pressure die casting (HPDC) and different heat treatment strategies. Single step artificial aging, artificial aging with pre-aging and the effect of the quenching rate were studied via hardness measurements and transmission electron microscopy (TEM). Single-step artificial aging resulted in an increase in hardness of 58% in peak aged condition for the Zn-only modified alloy and of 56% for the Zn- and Cu-containing alloy. Pre-aging treatments either reduce the necessary aging time or increase the hardness, depending on the parameters used. Microstructural investigations indicate a significant change in the S- or T-phase precursors, and in precipitation density with pre-aging. The alloys have high potential for use as complex structural HPDC components in lightweight transport applications, but are also of general interest for components which require high strength and formability.</p>