Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baumegger, Walter

  • Google
  • 2
  • 10
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundaries24citations
  • 2019Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary design35citations

Places of action

Chart of shared publication
Matko, Igor
1 / 3 shared
George, Easo P.
1 / 13 shared
Zalesak, Jakub
2 / 14 shared
Daniel, Rostislav
2 / 18 shared
Keckes, Jozef
2 / 41 shared
Hohenwarter, A.
1 / 9 shared
Ziegelwanger, Tobias
1 / 4 shared
Mitterer, Christian
1 / 28 shared
Meindlhumer, Michael
1 / 12 shared
Todt, Juraj
1 / 24 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Matko, Igor
  • George, Easo P.
  • Zalesak, Jakub
  • Daniel, Rostislav
  • Keckes, Jozef
  • Hohenwarter, A.
  • Ziegelwanger, Tobias
  • Mitterer, Christian
  • Meindlhumer, Michael
  • Todt, Juraj
OrganizationsLocationPeople

article

Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary design

  • Baumegger, Walter
  • Ziegelwanger, Tobias
  • Mitterer, Christian
  • Zalesak, Jakub
  • Meindlhumer, Michael
  • Daniel, Rostislav
  • Keckes, Jozef
  • Todt, Juraj
Abstract

<p>The fracture toughness of nanostructured materials depends on anisotropic physical properties of individual microstructural features, their texture and/or topology. In this work, intentionally sculptured grain boundaries of low cohesive energy were used to form “weak” and “tough” crack propagation directions within a nanocrystalline TiN film, allowing to correlate the directional arrangement of grains and anisotropy of fracture toughness. By using a selective micromechanical testing approach, two different cracking directions were probed in a scanning electron microscope by loading microcantilever beam specimens prepared parallel and perpendicular to the stacked direction of the alternately tilted columnar grains. The fracture toughness along the sculptured grain boundaries was ~30% higher due to effective multiple crack deflection at the kink planes, which was not observed along weak cleavage planes in the stacked direction. The results indicate the fundamental importance of microstructural design in the synthesis of tough nanostructured ceramics, whose anisotropic mechanical properties can be controlled effectively by incorporating dedicated microstructural features of well-defined topology, orientation and density.</p>

Topics
  • density
  • grain
  • grain boundary
  • crack
  • anisotropic
  • texture
  • ceramic
  • tin
  • fracture toughness