People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Todt, Juraj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Peculiarity of hydrogen absorption in duplex steels: Phase-selective lattice swelling and stress evolutioncitations
- 2023Deflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationcitations
- 2023Metal–Matrix Composites from High‐Pressure Torsion with Functionalized Material Behavior
- 2023Influence of Hatch Strategy on Crystallographic Texture Evolution, Mechanical Anisotropy of Laser Beam Powder Bed Fused S316L Steelcitations
- 2023Design of high-strength martensitic steels by novel mixed-metal nanoprecipitates for high toughness and suppressed hydrogen embrittlementcitations
- 2023Deflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantation ; ENEngelskEnglishDeflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationcitations
- 2023Ti$_{40}$Zr$_{10}$Cu$_{36}$Pd$_{14}$ bulk metallic glass as oral implant materialcitations
- 2023Manufacturing size effect on the structural and mechanical properties of additively manufactured Ti-6Al-4V microbeamscitations
- 2023Ti40Zr10Cu36Pd14 bulk metallic glass as oral implant materialcitations
- 2022Graded Inconel-stainless steel multi-material structure by inter- and intralayer variation of metal alloyscitations
- 2022Graded Inconel-stainless steel multi-material structure by inter- and intralayer variation of metal alloyscitations
- 2022Combining hardness measurements of a heat-treated crankshaft bearing with cross-sectional residual stress and retained austenite distributions measured by HEXRDcitations
- 2021Ion irradiation-induced localized stress relaxation in W thin film revealed by cross-sectional X-ray nanodiffractioncitations
- 2020Nanoscale stress distributions and microstructural changes at scratch track cross-sections of a deformed brittle-ductile CrN-Cr bilayercitations
- 2020Evolution of stress fields during crack growth and arrest in a brittle-ductile CrN-Cr clamped-cantilever analysed by X-ray nanodiffraction and modellingcitations
- 2019Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary designcitations
- 2019Cross-sectional gradients of residual stresses, microstructure and phases in a nitrided steel revealed by 20 µm synchrotron X-ray diffraction
- 2018Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloycitations
- 201830 nm X-ray focusing correlates oscillatory stress, texture and structural defect gradients across multilayered TiN-SiOx thin filmcitations
- 2018An investigation on shear banding and crystallographic texture of Ag–Cu alloys deformed by high-pressure torsioncitations
- 2017Phase Decomposition of a Single-Phase AlTiVNb High-Entropy Alloy after Severe Plastic Deformation and Annealingcitations
- 2016In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentationcitations
- 2016Integrated experimental and computational approach for residual stress investigation near through-silicon viascitations
- 2014Mono-textured nanocrystalline thin films with pronounced stress-gradientscitations
Places of action
Organizations | Location | People |
---|
article
Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary design
Abstract
<p>The fracture toughness of nanostructured materials depends on anisotropic physical properties of individual microstructural features, their texture and/or topology. In this work, intentionally sculptured grain boundaries of low cohesive energy were used to form “weak” and “tough” crack propagation directions within a nanocrystalline TiN film, allowing to correlate the directional arrangement of grains and anisotropy of fracture toughness. By using a selective micromechanical testing approach, two different cracking directions were probed in a scanning electron microscope by loading microcantilever beam specimens prepared parallel and perpendicular to the stacked direction of the alternately tilted columnar grains. The fracture toughness along the sculptured grain boundaries was ~30% higher due to effective multiple crack deflection at the kink planes, which was not observed along weak cleavage planes in the stacked direction. The results indicate the fundamental importance of microstructural design in the synthesis of tough nanostructured ceramics, whose anisotropic mechanical properties can be controlled effectively by incorporating dedicated microstructural features of well-defined topology, orientation and density.</p>