People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Daniel, Rostislav
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022Impact of Si on the high-temperature oxidation of AlCr(Si)N coatingscitations
- 2022Precipitation-based grain boundary design alters Inter- to Trans-granular Fracture in AlCrN Thin Filmscitations
- 2022Biocompatibility and antibacterial properties of TiCu(Ag) thin films produced by physical vapor deposition magnetron sputteringcitations
- 2022Biocompatibility and antibacterial properties of TiCu(Ag) thin films produced by physical vapor deposition magnetron sputteringcitations
- 2022Microstructure-dependent phase stability and precipitation kinetics in equiatomic CrMnFeCoNi high-entropy alloy: Role of grain boundariescitations
- 2021Ion irradiation-induced localized stress relaxation in W thin film revealed by cross-sectional X-ray nanodiffractioncitations
- 2021Influence of the Silver Content on Mechanical Properties of Ti-Cu-Ag Thin Filmscitations
- 2020Nanoscale stress distributions and microstructural changes at scratch track cross-sections of a deformed brittle-ductile CrN-Cr bilayercitations
- 2020Evolution of stress fields during crack growth and arrest in a brittle-ductile CrN-Cr clamped-cantilever analysed by X-ray nanodiffraction and modellingcitations
- 2019Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary designcitations
- 2019Stress-controlled decomposition routes in cubic AlCrN films assessed by in-situ high-temperature high-energy grazing incidence transmission X-ray diffractioncitations
- 201830 nm X-ray focusing correlates oscillatory stress, texture and structural defect gradients across multilayered TiN-SiOx thin filmcitations
- 2017Peculiarity of self-assembled cubic nanolamellae in the TiN/AlN systemcitations
- 2016In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentationcitations
- 2016Hierarchical Architectures to Enhance Structural and Functional Properties of Brittle Materialscitations
- 2016Cross-sectional structure-property relationship in a graded nanocrystalline Ti1-xAlxN thin filmcitations
- 2014Novel nanocomposite coatings
- 2014Mono-textured nanocrystalline thin films with pronounced stress-gradientscitations
Places of action
Organizations | Location | People |
---|
article
Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary design
Abstract
<p>The fracture toughness of nanostructured materials depends on anisotropic physical properties of individual microstructural features, their texture and/or topology. In this work, intentionally sculptured grain boundaries of low cohesive energy were used to form “weak” and “tough” crack propagation directions within a nanocrystalline TiN film, allowing to correlate the directional arrangement of grains and anisotropy of fracture toughness. By using a selective micromechanical testing approach, two different cracking directions were probed in a scanning electron microscope by loading microcantilever beam specimens prepared parallel and perpendicular to the stacked direction of the alternately tilted columnar grains. The fracture toughness along the sculptured grain boundaries was ~30% higher due to effective multiple crack deflection at the kink planes, which was not observed along weak cleavage planes in the stacked direction. The results indicate the fundamental importance of microstructural design in the synthesis of tough nanostructured ceramics, whose anisotropic mechanical properties can be controlled effectively by incorporating dedicated microstructural features of well-defined topology, orientation and density.</p>