People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sharp, Joanne
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Investigation of the microstructure of He+ ion-irradiated TiBe12 and CrBe12 using ex-situ transmission electron microscopycitations
- 2020Improving the oscillating wear response of cold sprayed Ti-6Al-4V coatings through a heat treatmentcitations
- 2020Ramification of thermal expansion mismatch and phase transformation in TiC-particulate/SiC-matrix ceramic compositecitations
- 2020The Lubricating Properties of Spark Plasma Sintered (SPS) Ti3SiC2 MAX Phase Compound and Compositecitations
- 2019Exploiting thermal strain to achieve an in-situ magnetically graded materialcitations
- 2019Microstructural evolution and wear mechanism of Ti3AlC2 – Ti2AlC dual MAX phase composite consolidated by spark plasma sintering (SPS)citations
- 2019Influence of solidification cell structure on the martensitic transformation in additively manufactured steelscitations
- 2017Spinel–rock salt transformation in LiCoMnO4−δcitations
- 2017Direct observation of precipitation along twin boundaries and dissolution in a magnesium alloy annealing at high temperaturecitations
- 2017Tribological response and characterization of Mo–W doped DLC coatingcitations
- 2016On the use of cryomilling and spark plasma sintering to achieve high strength in a magnesium alloycitations
- 2016Characterisation of L21-ordered Ni2TiAl precipitates in Fe-Mn maraging steelscitations
- 2016Spinel-rock salt transformation in LiCoMnO4-δcitations
- 2016Microstructural evolution of Mn-based maraging steels and their influences on mechanical propertiescitations
- 2015New compositional design for creating tough metallic glass composites with excellent work hardeningcitations
- 2015Cross sectional TEM analysis of duplex HIPIMS and DC magnetron sputtered Mo and W doped carbon coatings
- 20123-dimensional imaging of dislocation microstructures by electron beams
- 2011High-angle triple-axis specimen holder for three-dimensional diffraction contrast imaging in transmission electron microscopycitations
Places of action
Organizations | Location | People |
---|
article
Exploiting thermal strain to achieve an in-situ magnetically graded material
Abstract
Spatially resolved functional grading is a key differentiator for additive manufacturing, achieving a level of control that could not be realised by conventional methods. Here we use the rapid solidification and thermal strain associated with selective laser melting to create an in-situ microstructurally and magnetically graded single-composition material, exploiting the solid-state austenite-martensite phase transformation. The fine grain sizes resulting from high cooling rates suppress the thermal martensite start temperature, increasing the proportion of retained austenite. Then the thermal strain accrued during the build causes in-situ deformation-driven martensitic transformation. By controlling the thermal strain, through appropriate selection of build parameters and geometry, we have been able to control the final ratio of austenite to martensite. Fully austenitic regions are paramagnetic, while dual-phase regions show increasingly ferromagnetic behaviour with an increasing proportion of martensite. We exploit this to build a magnetically graded rotor which we run successfully in a synchronous motor.