People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Turteltaub, Sergio
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020An enhanced curvature-constrained design method for manufacturable variable stiffness composite laminatescitations
- 2019Multiscale modeling of the effect of sub-ply voids on the failure of composite materialscitations
- 2019Computational investigation of porosity effects on fracture behavior of thermal barrier coatingscitations
- 2018A micromechanical fracture analysis to investigate the effect of healing particles on the overall mechanical response of a self-healing particulate compositecitations
- 2018Determination of fracture strength and fracture energy of (metallo-) ceramics by a wedge loading methodology and corresponding cohesive zone-based finite element analysiscitations
- 2018Multiscale analysis of mixed-mode fracture and effective traction-separation relations for composite materialscitations
- 2018Modelling the fracture behaviour of thermal barrier coatings containing healing particlescitations
- 2016Thermomechanical discrete dislocation-transformation model of single-crystal shape memory alloycitations
- 2011Analysis of banded morphology in multiphase steels based on a discrete dislocation-transformation modelcitations
- 2009Transformation-induced plasticity in multiphase steels subjected to thermomechanical loading.citations
Places of action
Organizations | Location | People |
---|
article
Modelling the fracture behaviour of thermal barrier coatings containing healing particles
Abstract
The performance of a self-healing Thermal Barrier Coating (TBC) containing dispersed healing particles depends crucially on the mismatch in thermomechanical properties between the healing particles and the TBC matrix. The present work systematically investigates this phenomenon based on numerical simulations using cohesive element-based finite element analysis. The effect of the mismatch in Coefficient of Thermal Expansion (CTE) and fracture strength between the healing particles and the matrix on the fracture characteristics is quantified in detail. Unit cell-based analyses are conducted on a representative self-healing TBC system under a thermal loading step typically experienced by TBC systems in jet turbines. Two different simulation setups are considered within the TBC unit cell namely (i) a single pair of healing particles and (ii) a randomly distributed array of healing particles. The results of the simulations are reported in terms of the fracture pattern, crack initiation temperature and crack length for various CTE mismatch ratios. Correlations are established between the results obtained from the two simulation setups essentially revealing the effect of spatial distribution and proximity of healing particles on the fracture pattern. The results obtained from the analyses can be utilised to achieve a robust design of a self-healing TBC system. ; Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. ; Aerospace Structures & Computational Mechanics ; Novel Aerospace Materials