People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Silva, Dilusha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2018Effect of thermal annealing on stress relaxation and crystallisation of ion beam sputtered amorphous Si1-xGex thin filmscitations
- 2017Large-Area MEMS Tunable Fabry-Perot Filters for Multi/Hyperspectral Infrared Imagingcitations
- 2016Investigation of Thermal Expansion Effects on Si-Based MEMS Structurescitations
- 2014Characterization of mechanical, optical and structural properties of bismuth oxide thin films as a write-once medium for blue laser recordingcitations
Places of action
Organizations | Location | People |
---|
article
Effect of thermal annealing on stress relaxation and crystallisation of ion beam sputtered amorphous Si1-xGex thin films
Abstract
<p>Si<sub>1-x</sub>Ge<sub>x</sub> (0≤x≤1) thin films were deposited by means of biased target ion beam sputtering at a low substrate temperature near 100 °C inside a vacuum chamber. The as-deposited films were all found to be amorphous and to be compressively stressed, and the magnitude of the compressive stress was found to decrease with increasing Ge content. Heat treatment for 30 min under vacuum conditions in the range from 100 °C to 800 °C was found to relax the compressive stress and to eventually cause crystallisation of the films at higher temperatures. The temperature required to achieve full stress relaxation was found to decrease with increasing Ge content, and to be well below that for film crystallisation. Annealing at temperatures above the crystallisation temperature caused physical damage to films containing >50 at.% Ge. Films with <50 at.% Ge showed no damage after annealing up to 800 °C.</p>