People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shtansky, Dmitry
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023TiAl-Based Oxidation-Resistant Hard Coatings with Different Al Contents Obtained by Vacuum-Pulse-Arc Granule Meltingcitations
- 2019Spark plasma sintered Al-based composites reinforced with BN nanosheets exfoliated under ball milling in ethylene glycolcitations
- 2019Al - BN interaction in a high-strength lightweight Al/BN metal-matrix composite: Theoretical modelling and experimental verificationcitations
- 2018Fabrication and application of BN nanoparticles, nanosheets and their nanohybridscitations
- 2018Structure Amorphization and Mechanical Properties of Nanolaminates of the Copper–Niobium System During High-Pressure Torsioncitations
- 2018Al-based composites reinforced with AlB 2 , AlN and BN phases: Experimental and theoretical studiescitations
- 2018BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agentscitations
- 2017High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixturescitations
- 2016Mechanical properties and current-carrying capacity of Al reinforced with graphene/BN nanoribbons: a computational studycitations
- 2016In situ TEM measurements of mechanical properties of individual spherical BN nanoparticles of different morphologies
- 2016Nanostructured BN-Mg composites: features of interface bonding and mechanical propertiescitations
- 2015Line and rotational defects in boron-nitrene: Structure, energetics, and dependence on mechanical strain from first-principles calculationscitations
- 2013Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbonscitations
Places of action
Organizations | Location | People |
---|
article
Al-based composites reinforced with AlB 2 , AlN and BN phases: Experimental and theoretical studies
Abstract
The influence of reinforcing AlN, AlB2 and BN phases, either individually or in combination, on the mechanical properties of Al-based composites fabricated via reactive ball milling of Al/BN, Al/B, and Al/Li3N powder mixtures, followed by their spark plasma sintering (SPS) was studied. An increase in tensile strength by 135% (25 °C) and 185% (500 °C) compared to pure Al was achieved in the Al/BN composites where BN, AlN, and AlB2 phases simultaneously formed. Density Functional Theory (DFT) calculations of the interface strength between Al and formed phases supported the experimental data. The obtained results demonstrated that the combination of reactive ball milling and SPS is a promising technique allowing for the formation of reinforcing phases from source materials.