People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hassanin, Hany
Canterbury Christ Church University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Hot Air Contactless Single Point Incremental Formingcitations
- 2022Multipoint Forming Using Hole-Type Rubber Punchcitations
- 2021Laser powder bed fusion of Ti-6Al-2Sn-4Zr-6Mo alloy and properties prediction using deep learning approachescitations
- 2020Controlling the properties of additively manufactured cellular structures using machine learning approachescitations
- 20204D printing of origami structures for minimally invasive surgeries using functional scaffoldcitations
- 2018Additive Manufactured Sandwich Composite/ABS Parts for Unmanned Aerial Vehicle Applicationscitations
- 2018Surface finish improvement of additive manufactured metal partscitations
- 2018Microfabrication of Net Shape Zirconia/Alumina Nano-Composite Micro Partscitations
- 2018Tailoring selective laser melting process for titanium drug-delivering implants with releasing micro-channelscitations
- 2018Porosity control in 316L stainless steel using cold and hot isostatic pressingcitations
- 2017Net-Shape Manufacturing using Hybrid Selective Laser Melting/Hot Isostatic Pressingcitations
- 2017Evolution of grain boundary network topology in 316L austenitic stainless steel during powder hot isostatic pressingcitations
- 2017Development and Testing of an Additively Manufactured Monolithic Catalyst Bed for HTP Thruster Applicationscitations
- 2016Effect of casting practice on the reliability of Al cast alloyscitations
- 2016Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implantscitations
- 2016Selective Laser Melting of TiNi Auxetic Structures
- 2016The development of TiNi-based negative Poisson's ratio structure using selective laser meltingcitations
- 2015Influence of processing conditions on strut structure and compressive properties of cellular lattice structures fabricated by selective laser meltingcitations
- 2015In-situ shelling via selective laser melting: modelling and microstructural characterisationcitations
Places of action
Organizations | Location | People |
---|
article
Porosity control in 316L stainless steel using cold and hot isostatic pressing
Abstract
<p>Porous biomedical implants are known for their improved osseointegration due to the ingrowth of bone tissues, combined with a lower elastic modulus to solid implants, resulting in a reduced likelihood for stress shielding and implant loosening. In this work, the control of the porosity content in capsule-free powder hot isostatic pressing (CF-HIPing) of 316L stainless steel was investigated. The proposed approach utilises cold isostatic pressing (CIPing) to form green compacts using rubber moulds, followed by CF-HIPing under suitable conditions. Porosity control was attained via the selection of the powder particle size used in creating the green compacts. The microstructural and mechanical properties development of the CF-HIPed structures was studied using optical and scanning electron microscopy, micro-computer tomography, hardness, and compression testing. The occurrence of powder necking was visualised using electron backscattered diffraction. The results showed a significant increase in the pore fraction of the samples by increasing the particle size of the powder. However, increasing the particle size was also associated with a drop in the elastic modulus, compressive strength, ductility, and hardness of the final structures. Nonetheless, porous structures with elastic modulus between 17 and 30 GPa were successfully produced using a powder particle size range of 32–50 μm, matching the elastic modulus of human bones.</p>