Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marcinkowska-Gapińska, Anna

  • Google
  • 1
  • 8
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloids42citations

Places of action

Chart of shared publication
Gapiński, Jacek
1 / 10 shared
Zalewski, Tomasz
1 / 4 shared
Ivashchenko, Olena
1 / 15 shared
Jurga, Stefan
1 / 59 shared
Peplińska, Barbara
1 / 14 shared
Nowaczyk, Grzegorz
1 / 20 shared
Jarek, Marcin
1 / 14 shared
Przysiecka, Łucja
1 / 4 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Gapiński, Jacek
  • Zalewski, Tomasz
  • Ivashchenko, Olena
  • Jurga, Stefan
  • Peplińska, Barbara
  • Nowaczyk, Grzegorz
  • Jarek, Marcin
  • Przysiecka, Łucja
OrganizationsLocationPeople

article

Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloids

  • Gapiński, Jacek
  • Zalewski, Tomasz
  • Ivashchenko, Olena
  • Jurga, Stefan
  • Peplińska, Barbara
  • Nowaczyk, Grzegorz
  • Jarek, Marcin
  • Przysiecka, Łucja
  • Marcinkowska-Gapińska, Anna
Abstract

<p>Multimodal nanoparticles (NPs) that may be used for therapies and diagnostics is the most promising trend for efficient therapy. We demonstrate that nanocomposite based on self-organizing silver and ultrasmall magnetic iron oxide NPs (MAg) produced in one-step synthesis revealed unique combination of fluorescence, bactericidal, fungicidal properties and have a potential as magnetic resonance imaging (MRI) contrast agent. Using the green chemistry approach, ginger (Zingiber officinale) rhizome extract was applied as capping agent for MAg synthesis, providing also additional fluorescent properties of NPs and inducing hydrocolloids structuring. The MAg were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive microanalysis (EDS), fluorescence microscopy, cryo-SEM, dynamic light scattering (DLS) techniques, Fourier transform infrared (FTIR) and ultraviolet–visible (UV–Vis) spectroscopies. MAg dispersions in water and some biological media are very stable which is important for biomedical application. The existence of microstructure in MAg hydrocolloids was proved. The hierarchical character and high ordering of this microstructure were discovered and its level-by-level building blocks were investigated. The microstructure was found to be responsible for fluorescence emittance of MAg hydrocolloids. The properties as well as potential application of the MAg hydrocolloids is yet to be discovered.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • silver
  • scanning electron microscopy
  • x-ray diffraction
  • transmission electron microscopy
  • iron
  • Energy-dispersive X-ray spectroscopy
  • dynamic light scattering
  • fluorescence microscopy