Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Andrei, C.

  • Google
  • 1
  • 7
  • 117

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Dissimilar laser welding of superelastic NiTi and CuAlMn shape memory alloys117citations

Places of action

Chart of shared publication
Ramirez, Antonio J.
1 / 3 shared
Omori, T.
1 / 3 shared
Miranda, R. M.
1 / 58 shared
Fernandes, Francisco Manuel Braz
1 / 124 shared
Zhou, N.
1 / 12 shared
Zeng, Z.
1 / 20 shared
Oliveira, João Pedro
1 / 98 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Ramirez, Antonio J.
  • Omori, T.
  • Miranda, R. M.
  • Fernandes, Francisco Manuel Braz
  • Zhou, N.
  • Zeng, Z.
  • Oliveira, João Pedro
OrganizationsLocationPeople

article

Dissimilar laser welding of superelastic NiTi and CuAlMn shape memory alloys

  • Ramirez, Antonio J.
  • Andrei, C.
  • Omori, T.
  • Miranda, R. M.
  • Fernandes, Francisco Manuel Braz
  • Zhou, N.
  • Zeng, Z.
  • Oliveira, João Pedro
Abstract

<p>Dissimilar joining of advanced engineering alloys is fundamental for the development of new applications. However, joining two distinct materials poses difficulties owing to the several metallurgical and thermo-physical problems that can arise. This paper describes the work performed on dissimilar laser welding of NiTi and CuAlMn shape memory alloys, superelastic at room temperature. Detailed microstructural characterization was performed. The complex microstructure of the dissimilar joint is explained based on the characteristics of laser welding, namely material and heat flow, high cooling rates and thermal gradients within the fusion zone. Cycling tensile testing revealed that the joints preserved the superelastic behaviour despite the unfavourable microstructure of the fusion zone which translates into an irrecoverable strain of 2% when cycled at 5% strain. These results may open the possibilities for new applications based on this dissimilar combination which can combine superelasticity and higher thermal and electrical conductivity (with the latter two characteristics arising for the CuAlMn shape memory alloy).</p>

Topics
  • impedance spectroscopy
  • microstructure
  • electrical conductivity
  • joining