Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Feiteira, Joao

  • Google
  • 1
  • 4
  • 74

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Monitoring crack movement in polymer-based self-healing concrete through digital image correlation, acoustic emission analysis and SEM in-situ loading74citations

Places of action

Chart of shared publication
Gruyaert, Elke
1 / 41 shared
Belie, Nele De
1 / 54 shared
Lors, Christine
1 / 14 shared
Tsangouri, Eleni
1 / 46 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Gruyaert, Elke
  • Belie, Nele De
  • Lors, Christine
  • Tsangouri, Eleni
OrganizationsLocationPeople

article

Monitoring crack movement in polymer-based self-healing concrete through digital image correlation, acoustic emission analysis and SEM in-situ loading

  • Gruyaert, Elke
  • Belie, Nele De
  • Feiteira, Joao
  • Lors, Christine
  • Tsangouri, Eleni
Abstract

A study was performed to assess the fitness of continuous monitoring methods to detect failure due to excessive strain on polymers bridging moving cracks in the context of self-healing concrete. Testing of several polymer precursors with distinct properties also allowed conclusions regarding the requirements for polymers in this application. Acoustic emission (AE) analysis was performed in parallel with digital image correlation (DIC) at the macro-scale. In addition, a micro-scale study was performed with tensile tests inside an SEM chamber. Detection of failure through AE analysis coupled with DIC was possible only in case of failure due to brittle fracture of a rigid foam after 9% strain, which generated high-energy acoustic events. Direct observation of interfaces with SEM in-situ loading allowed determination of failure of a rigid foam due to cracking of the polymer matrix and detachment at the interface with the cementitious matrix, with an onset at 5% strain and complete detachment at 16% strain. For a flexible, continuous film of polymer, detachment occurred before 50% strain. Assuming adequate adhesion, polymers with high elongation (> 100%) and modulus of elasticity much lower than 10 MPa are required if cracks subjected to a realistic amplitude of movement are targeted.

Topics
  • polymer
  • scanning electron microscopy
  • crack
  • elasticity
  • acoustic emission