People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Riccardi, K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Development of tantalum scaffold for orthopedic applications produced by space-holder method
Abstract
<p>In the present study, production of tantalum porous scaffolds using the space holder technique was performed. The effect of size and content of sodium chloride particles, used as space holder, as well as compacting pressure on foam structure and mechanical properties have been investigated. The morphological characterization was carried out by means of scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and micro-CT technique. The relationship between the elastic modulus and yield strength of the tantalum porous scaffold and the pore structure was evaluated. Space holder technique allows obtaining tantalum open-cell structure (70% of porosity) and modulus of elasticity similar to cancellous bone, with reproducible processability into three-dimensional structures and reasonable manufacturing costs.</p>