Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nili, Mahmoud

  • Google
  • 3
  • 4
  • 384

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2019The Effect of Fine and Coarse Recycled Aggregates on Fresh and Mechanical Properties of Self-Compacting Concrete91citations
  • 2017Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash59citations
  • 2015Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume234citations

Places of action

Chart of shared publication
Sasanipour, Hossein
1 / 7 shared
Aslani, Farhad
1 / 71 shared
Ehsani, Ahmad
2 / 10 shared
Shaabani, Keyvan
1 / 1 shared
Chart of publication period
2019
2017
2015

Co-Authors (by relevance)

  • Sasanipour, Hossein
  • Aslani, Farhad
  • Ehsani, Ahmad
  • Shaabani, Keyvan
OrganizationsLocationPeople

article

Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume

  • Ehsani, Ahmad
  • Nili, Mahmoud
Abstract

<p>Concrete performance is affected by aggregates, the bulk cement paste and particularly the interfacial transition zone (ITZ). In this regard, the ITZ is generally weaker than either of two main components of concrete, namely the aggregate and the bulk hydrated cement paste. On the other hand, the strength properties are highly influenced by the ITZs complex microstructure (which has a dynamic nature) and its gradual variations as a result of environmental conditions. Many attempts have been made to overcome the heterogonous deficiencies of concrete through the utilization of different pozzolanic materials such as nanosilica (nS) and silica fume (SF). In the present work, nS at 0%, 1.5%, 3%, 5% and 7.5% and SF at 0%, 5% and 7.5% by weight of cement were utilized to investigate their effect on the strength properties of concrete and corresponding cement paste at early and older ages. A microstructure study was also performed by SEM, XRD and EDS to realize the reasons for the obtained results. The results demonstrated that adding 3% or 5% nS to specimens free of SF would increase both cement paste and concrete compression strength. The microstructure analysis revealed that modification of the ITZ was responsible for this strength enhancement.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • scanning electron microscopy
  • x-ray diffraction
  • strength
  • cement
  • Energy-dispersive X-ray spectroscopy
  • interfacial