People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mariaux, Gilles
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2018Droplet size prediction in ultrasonic nebulization for non-oxide ceramic powder synthesiscitations
- 2017On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions ; Plasma spray physical vapor deposition aims tosubstantially evaporate powders in order to produce coatingswith various microstructures. This is achieved bypowder vapor condensation onto the substrate and/or bydeposition of fine melted powder particles and nanoclusters.The deposition process typically operates at pressuresranging between 10 and 200 Pa. In addition to the experimentalworks, numerical simulations are performed tobetter understand the process and optimize the experimentalconditions. However, the combination of hightemperatures and low pressure with shock waves initiatedby supersonic expansion of the hot gas in the low-pressuremedium makes doubtful the applicability of the continuumapproach for the simulation of such a process. This workinvestigates (1) effects of the pressure dependence ofthermodynamic and transport properties on computationalfluid dynamics (CFD) predictions and (2) the validity of thecontinuum approach for thermal plasma flow simulationunder very low-pressure conditions. The study comparesthe flow fields predicted with a continuum approach usingCFD software with those obtained by a kinetic-basedapproach using a direct simulation Monte Carlo method(DSMC). It also shows how the presence of high gradientscan contribute to prediction errors for typical PS-PVDconditions.citations
- 2012Adhesion of ceramic coating on thin and smooth metal substrate : a novel approach with a nanostructured ceramic interlayercitations
- 2012Finite element modeling of the different failure mechanisms of a plasma sprayed thermal barrier coatings systemcitations
- 2011Impact of the non-homogenous temperature distribution and the coatings process modeling on the thermal barrier coatings systemcitations
- 2011Crack propagation modeling on the interfaces of thermal barrier coating system with different thickness of the oxide layer and different interface morphologiescitations
- 2010Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element methodcitations
Places of action
Organizations | Location | People |
---|
article
Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method
Abstract
International audience ; A Finite Element Model (FEM) was developed to evaluate the stresses induced by the thermal cycling in a typical plasma-sprayed thermal barrier coating system (TBCs). The thermo-mechanical model of this multi-layer system takes into account the effects of thermal and mechanical properties, morphology of the top-coat/bond-coat interface and oxidation on the local stresses that are responsible for the microcrack nucleation during cooling, especially near the metal/ceramic interface. Two top-coat/bond-coat geometries corresponding to different interfacial asperity morphologies (semicircle or sinusoidal) are modeled considering a two dimensional and periodic geometry. The effect of the geometry and the amplitude of asperities on stress distribution are examined to study the cause of the subsequent delamination of the TBCs system. Moreover, the effect of the creep in all layers and plastic deformation in the bond-coat as well as the oxidation in the perpendicular direction of the top-coat/ bond-coat interface are examined toward the stress development and critical sites with respect to possible crack paths. In addition, crack initiation and propagation at the system was predicted.