People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alshalwi, Matar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Sunlight-active, S-g-C3N4 boosts Ni-doped ZnFe2O4 photocatalysts for efficient organic pollutants degradationcitations
- 2024A stable metal ferrite Construction, physical Characterizations, and investigation magnetic properties in thin polymer filmscitations
- 2024Engineering the nanostructure of iron-doped ZnO for the construction of Fe-ZnO/SGCN nanocomposites to enhance the spatial charge separation and their potential applicationscitations
- 2024Comparative investigation of tellurium-doped transition metal nanoparticles (Zn, Sn, Mn)citations
- 2024Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocompositecitations
- 2024Fe-doped CdS with sulfonated g-C3N4 in a heterojunction designed for improved biomedical and photocatalytic potentialscitations
- 2024High-strength montmorillonite polyurethane nanocomposites with exfoliated montmorillonitecitations
- 2024Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites
- 2024Zinc‐based metal–organic frameworks for encapsulation and sustained release of ciprofloxacin for excellent antibacterial activitiescitations
- 2024Harnessing solar power for enhanced photocatalytic degradation of coloured pollutants using novel Mg-doped-ZnFe2O4/S@g-C3N4 heterojunctioncitations
- 2024Boosting highly effective photocatalytic activity through g-C3N4 coupled Al doped zinc ferrite nanoparticlescitations
- 2024Highly synergistic antibacterial activity of copper (II)-based nano metal–organic frameworkcitations
- 2023Electrochemical Studies of Nanoflakes like ZnMnO<sub>3</sub> Perovskites for the Determination of Priority Organic Pollutant N-hydroxysuccinimidecitations
Places of action
Organizations | Location | People |
---|
article
Boosting highly effective photocatalytic activity through g-C3N4 coupled Al doped zinc ferrite nanoparticles
Abstract
<p>Photocatalysts have gotten much attention because of the growing need to protect the environment, and metal-doped zinc ferrite heterojunctions are an exciting system to look into. The current study involves synthesizing aluminum-doped zinc ferrite (Al@ZF) nanoparticles (NPs) and nanocomposites of Al@ZF with S@g-C<sub>3</sub>N<sub>4</sub> via a hydrothermal method and then evaluating their photocatalytic activity. Al@ZF NPs were prepared by varying the percentage of aluminum (0.5, 1, 3, 5, 7 and 9 wt %). Photocatalytic measurements were carried out employing methylene blue (MB) as the model dye. The Al@ZF NPs with 1 % concentration showed the best photocatalytic capability among all of them. Correspondingly, the S@g-C<sub>3</sub>N<sub>4</sub>/Al@ZF nanocomposites (NCs) were made by varying the percentage of S@g-C<sub>3</sub>N<sub>4</sub> (10, 30, 50 and 70 wt %) with the 1 % Al@ZF NPs. Then, photocatalytic working measurements of the S@g-C<sub>3</sub>N<sub>4</sub>/Al@ZF NCs proved that the 50 % S@g-C<sub>3</sub>N<sub>4</sub>/Al@ZF NC showed the highest photocatalytic activity and completely degraded MB within 150 min of light irradiation. To verify the morphological structure of these artificial nanoparticles and nanocomposites, several analytical techniques including XRD, SEM, TEM, BET, FTIR, and XPS were used. The produced photocatalyst's quick degradation kinetics and simplicity in separation may provide new opportunities for the oxidation of persistent organic pollutants. To our best knowledge, no prior report has been made on the synthesized nanocomposite. The proposed modification of Al@ZF using 50 % S@g-C<sub>3</sub>N<sub>4</sub> is effective, less expensive, non-toxic, and highly efficient for scalable wastewater treatment applications.</p>