People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lastusaari, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Biophotonic composite scaffolds for controlled nitric oxide release upon NIR excitation
- 2023Glass-based composites comprised of CaWO4:Yb3+, Tm3+ crystals and SrAl2O4:Eu2+, Dy3+ phosphors for green afterglow after NIR chargingcitations
- 2023Glass-based composites comprised of CaWO4:Yb3+, Tm3+ crystals and SrAl2O4:Eu2+, Dy3+ phosphors for green afterglow after NIR chargingcitations
- 2023Glass-based composites comprised of CaWO4:Yb3+, Tm3+ crystals and SrAl2O4:Eu2+, Dy3+ phosphors for green afterglow after NIR chargingcitations
- 2022Near-infrared rechargeable glass-based composites for green persistent luminescencecitations
- 2022Near-infrared rechargeable glass-based composites for green persistent luminescencecitations
- 2022Low temperature afterglow from SrAl2O4 : Eu, Dy, B containing glasscitations
- 2021Micro-luminescence measurement to evidence decomposition of persistent luminescent particles during the preparation of novel persistent luminescent tellurite glassescitations
- 2021Preparation of glass-based composites with green upconversion and persistent luminescence using modified direct doping methodcitations
- 2019Phosphate glasses with blue persistent luminescence prepared using the direct doping methodcitations
- 2019Sintered silica bodies with persistent luminescencecitations
- 2018Persistent luminescent borosilicate glasses using direct particles doping methodcitations
- 2018Influence of the phosphate glass melt on the corrosion of functional particles occurring during the preparation of glass-ceramicscitations
- 2018Processing and Characterization of Bioactive Borosilicate Glasses and Scaffolds with Persistent Luminescencecitations
- 2018Decomposition of persistent luminescent microparticles in corrosive phosphate glass meltcitations
- 2018Persistent luminescent particles containing bioactive glassescitations
- 2017Upconversion in low rare-earth concentrated phosphate glasses using direct NaYF4citations
- 2016Novel oxyfluorophosphate glasses and glass-ceramicscitations
- 2016Effect of the glass melting condition on the processing of phosphate-based glass-ceramics with persistent luminescence propertiescitations
- 2015Processing and characterization of phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticlescitations
- 2015New alternative route for the preparation of phosphate glasses with persistent luminescence propertiescitations
- 2011Defect aggregates in the Sr.sub.2./sub.MgSi.sub.2./sub.O.sub.7./sub. persistent luminescence materialcitations
Places of action
Organizations | Location | People |
---|
article
Preparation of glass-based composites with green upconversion and persistent luminescence using modified direct doping method
Abstract
New oxyfluorophosphate glass-based composites which exhibit not only green upconversion under 980 nm pumping but also green persistent luminescence (PeL) after being UV charged were successfully prepared using the direct doping method. The composites are composed of a glass-ceramic with Er3+ doped CaF2 crystals and of the persistent luminescent particles with the SrAl2O4:Eu,Dy composition. In the standard direct doping method, the glass melt is quenched few minutes after adding the PeL particles in the melt held at a temperature lower than the melting temperature. It is demonstrated that the direct doping method should be modified when preparing oxyfluoride glasses with PeL particles to limit not only the decomposition of the PeL particles in the glass but also the fluorine evaporation occurring during the glass preparation. Here, the composites were prepared by quenching the melt right after adding the PeL particles. The modified direct doping method allows the preparation of glass-based composites with strong green upconversion and homogeneous green persistent luminescence. ; Peer reviewed