People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hinge, Mogens
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2021Real-time ageing of polyesters with varying diolscitations
- 2021A low-cost tabletop tensile tester with optical extensometercitations
- 2020Accelerating effect of pigments on poly(acrylonitrile butadiene styrene) degradationcitations
- 2020Facile Access to Disulfide/Thiol Containing Poly(glycidyl methacrylate) Brushes as Potential Rubber Adhesive Layerscitations
- 2020Facile Access to Disulfide/Thiol Containing Poly(glycidyl methacrylate) Brushes as Potential Rubber Adhesive Layerscitations
- 2019Accelerated physical ageing of poly(1,4-cyclohexylenedimethylene-co-2,2,4,4-tetramethyl-1,3-cyclobutanediol terephthalate)citations
- 2018Straight forward approach for obtaining relaxation-recovery data
- 2018Efficient bonding of ethylene-propylene-diene M-class rubber to stainless steel using polymer brushes as a nanoscale adhesivecitations
- 2016Temperature- and time dependency on high friction poly(styrene-co-butyl methacrylate) coated papercitations
- 2015Nonfouling Tunable beta CD Dextran Polymer Films for Protein Applicationscitations
- 2015Nonfouling tunable βCD dextran polymer films for protein applicationscitations
- 2015Calcite nucleation on the surface of PNIPAM-PAAc micelles studied by time resolved in situ PXRDcitations
- 2014Durability of PEEK adhesive to stainless steel modified with aryldiazonium saltscitations
- 2013Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor–acceptor polymerscitations
- 2013Synthesis and photovoltaic properties from inverted geometry cells and roll-to-roll coated large area cells from dithienopyrrole-based donor–acceptor polymerscitations
- 2009The use of dielectric spectroscopy in the investigation of the effect of polymer choice on the flocculation of polystyrene particlescitations
Places of action
Organizations | Location | People |
---|
article
Real-time ageing of polyesters with varying diols
Abstract
<p>Polyesters are a widely used class of polymer due to their excellent processing, mechanical and recycling properties. However, polyesters are usually not used for durable goods. Thus, further understanding of underlying chemical and physical degradation mechanisms and their changes when changing the chemical composition of the polymer is required. This work presents four polyesters with varying diols (recycled poly (ethylene terephthalate) (PET-R), poly (butylene terephthalate) (PBT), poly (ethylene glycol-co-2,2,4,4-tetramethyl-1,3-cyclobutanediol terephthalate) (PETG) and poly (1,4-cyclohexylenedimethylene-co-2,2,4,4-tetramethyl-1,3-cyclobutanediol terephthalate) PCTT) submitted to a real-time exposure in Southern France for almost two years (16056 h). This environment demonstrated an average temperature of 20.6 °C, relative humidity of 61.4%RH and UV exposure (300–400 nm) of 0.95 MJ/m<sup>2</sup>. Differential scanning calorimetry showed significant physical ageing of the PET-R. Attenuated total reflectance Fourier transform infrared spectroscopy presented the loss and shift of the ester bond with an increase in hydroxyl species, as a result of significant chain scission of the polyesters. Degradation dominated the mechanical toughness response, resulting in all polyesters to become increasingly brittle with ageing. While the reference (t = 0 h) charpy v-notch toughness was 3.2, 2.6, 5.0 and 104 for PET-R, PBT, PETG and PCTT, respectively, they all decreased to below 1.5 kJ/m<sup>2</sup> after 2928 h of ageing. Similar behaviour was observed for charpy weld line toughness with reference between 93 and 290 kJ/m<sup>2</sup> and decreased to 1.8–2.2 kJ/m<sup>2</sup>. PET-R demonstrated the highest tensile elongation after ageing, but despite this PCTT was the last polyester to decrease significantly below the reference, presenting that PCTT was significantly more resistant towards ageing induced embrittlement.</p>