Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bartůněk, Vilém

  • Google
  • 4
  • 22
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Synthesis of nanosized LaFeAl11O19 hexaaluminate by mixed metal glycerolate method2citations
  • 2021Influence of Ceramic Particles Character on Resulted Properties of Zinc-Hydroxyapatite/Monetite Composites11citations
  • 2021The effective synthesis of large volumes of the ultrafine BaZrO3 nanoparticles6citations
  • 2020Can X-Ray Powder Diffraction Be a Suitable Forensic Method for Illicit Drug Identification?8citations

Places of action

Chart of shared publication
Jankovský, Ondřej
2 / 34 shared
Skrbek, Kryštof
1 / 1 shared
Antončik, Filip
2 / 14 shared
Lojka, Michal
2 / 26 shared
Pinc, Jan
1 / 16 shared
Školáková, Andrea
1 / 9 shared
Průša, Filip
1 / 8 shared
Čapek, Jaroslav
1 / 10 shared
Školáková, Tereza
1 / 2 shared
Vojtěch, Dalibor
1 / 36 shared
Veřtát, Petr
1 / 4 shared
Hosová, Klára
1 / 11 shared
Hlásek, Tomáš
1 / 4 shared
Sedmidubský, David
1 / 14 shared
Králík, František
1 / 1 shared
Setnička, Vladimír
1 / 1 shared
Svozil, Daniel
1 / 1 shared
Fagan, Patrik
1 / 1 shared
Jurásek, Bronislav
1 / 3 shared
Dehaen, Wim
1 / 47 shared
Kuchař, Martin
1 / 3 shared
Huber, Štěpán
1 / 2 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Jankovský, Ondřej
  • Skrbek, Kryštof
  • Antončik, Filip
  • Lojka, Michal
  • Pinc, Jan
  • Školáková, Andrea
  • Průša, Filip
  • Čapek, Jaroslav
  • Školáková, Tereza
  • Vojtěch, Dalibor
  • Veřtát, Petr
  • Hosová, Klára
  • Hlásek, Tomáš
  • Sedmidubský, David
  • Králík, František
  • Setnička, Vladimír
  • Svozil, Daniel
  • Fagan, Patrik
  • Jurásek, Bronislav
  • Dehaen, Wim
  • Kuchař, Martin
  • Huber, Štěpán
OrganizationsLocationPeople

article

The effective synthesis of large volumes of the ultrafine BaZrO3 nanoparticles

  • Hlásek, Tomáš
  • Jankovský, Ondřej
  • Sedmidubský, David
  • Bartůněk, Vilém
  • Antončik, Filip
  • Lojka, Michal
Abstract

BaZrO3 perovskite nanoparticles constitute a material desired for various advanced applications e.g. as artificial pinning centers in high-temperature superconductors or for photocatalytic hydrogen evolution. In this contribution, a novel method of synthetic for ultra-fine, pristine, non-stabilized free-surface nanoparticles of BaZrO3 is described. The method is based on the wet chemical approach and can yield large quantities of the desired product. The synthesized BaZrO3 nanoparticles were characterized by X-ray powder diffraction, X-ray fluorescence, and high-resolution transition electron microscopy. The analyses confirmed particle size in the range of 10–12 nm. Among its possible applications, the usage of such synthesized BZO in YBa2Cu3O7-δ superconductors is particularly interesting, because of the sizes of nano BZO, which is ideal for artificial pinning centers in single-domain YBa2Cu3O7-δ superconducting ceramics composites. The effect of YBa2Cu3O7-δ doping by BaZrO3 was studied by various measurements including morphology probed by scanning electron microscopy, measuring of trapped field, levitation force, and susceptibility of the prepared YBa2Cu3O7-δ single grain bulks. The synthesis method of ultra-fine BaZrO3 nanoparticles can be useful not only for applications in high-temperature rare-earth-based superconductors but also for a multitude of other applications also because of relative affordability and the possibility of synthesis of larger volumes of this material. © 2020 Elsevier B.V.

Topics
  • nanoparticle
  • perovskite
  • impedance spectroscopy
  • surface
  • grain
  • scanning electron microscopy
  • composite
  • Hydrogen
  • susceptibility