Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Golim, Obert

  • Google
  • 4
  • 7
  • 27

Aalto University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Low-Temperature Wafer-Level Bonding with Cu-Sn-In Solid Liquid Interdiffusion for Microsystem Packaging4citations
  • 2024Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnects2citations
  • 2023Achieving low-temperature wafer level bonding with Cu-Sn-In ternary at 150 °C14citations
  • 2021Low-temperature Metal Bonding for Optical Device Packaging7citations

Places of action

Chart of shared publication
Paulasto-Kröckel, Mervi
4 / 31 shared
Vuorinen, Vesa
4 / 48 shared
Wernicke, Tobias
2 / 3 shared
Pawlak, Marta
2 / 2 shared
Ross, Glenn
3 / 35 shared
Suihkonen, Sami
1 / 25 shared
Tiwary, Nikhilendu
2 / 9 shared
Chart of publication period
2024
2023
2021

Co-Authors (by relevance)

  • Paulasto-Kröckel, Mervi
  • Vuorinen, Vesa
  • Wernicke, Tobias
  • Pawlak, Marta
  • Ross, Glenn
  • Suihkonen, Sami
  • Tiwary, Nikhilendu
OrganizationsLocationPeople

article

Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnects

  • Paulasto-Kröckel, Mervi
  • Vuorinen, Vesa
  • Ross, Glenn
  • Suihkonen, Sami
  • Golim, Obert
Abstract

The trend for heterogeneous integration has driven the need for a low-temperature bonding process. Cu-Sn-In based solid-liquid interdiffusion (SLID) bonding technology has been presented as a viable option. However, previous studies have also reported that issues might exist in the interconnect interface towards the substrate, leading to the formation of intermetallic layers at undesired locations. This study carried out a series of characterization methods to determine the root cause of this issue. Cross-sectional observations showed that the problem occurs particularly at the TiW-Cu interface. Examination of the adhesion layer showed possible impurities existing in the layers, compromising its adhesion to copper. Residual stress analyses displayed opposing loading conditions at the interface. The interplay of the two factors resulted in the delamination of the TiW-Cu interface, leading to a pathway for Sn–In atoms. Furthermore, several methods are proposed to mitigate this issue.

Topics
  • copper
  • intermetallic
  • interdiffusion