People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gundgire, Tejas
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2025Severe shot peening : A promising solution for mitigating stress corrosion cracking in solution-annealed LPBF 316 l stainless steel
- 2024Stress corrosion cracking performance of LPBF-built 316L stainless steel post-processed with heat treatment and severe shot peening
- 2024Synergistic effects of heat treatments and severe shot peening on residual stresses and microstructure in 316L stainless steel produced by laser powder bed fusioncitations
- 2024Direct and Indirect Cavitation-Erosion Assessment of Cold Sprayed Aluminum Alloy/Quasicrystals Composite Coatings
- 2023The Effect of Laser Heat Treatment and Severe Shot Peening on Laser Powder Bed Fusion Manufactured AISI 316L Stainless Steel
- 2023Enhancement and underlying fatigue mechanisms of laser powder bed fusion additive-manufactured 316L stainless steelcitations
- 2022Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stressescitations
- 2022The effect of severe shot peening on fatigue life of laser powder bed fusion manufactured 316L stainless steelcitations
- 2022Surface and subsurface modification of selective laser melting built 316L stainless steel by means of severe shot peening
- 2021Additive manufactured 316l stainless-steel samples : Microstructure, residual stress and corrosion characteristics after post-processingcitations
- 2021Additive manufactured 316l stainless-steel samplescitations
- 2021Microstructure evolution and mechanical response-based shortening of thermal post-treatment for electron beam melting (EBM) produced Alloy 718citations
Places of action
Organizations | Location | People |
---|
article
Comparative study of additively manufactured and reference 316 L stainless steel samples – Effect of severe shot peening on microstructure and residual stresses
Abstract
The as-built selective laser melted (SLM) austenitic stainless steel 316 L components are characterized by presence of quality related concerns such as tensile residual stresses, poor surface finish, etc. These issues may prove to be detrimental during the actual usage of components and could result in poor mechanical performance. Therefore, it is important to perform the apt post processing such as heat treatment and shot peening to tailor such problems and facilitate improved mechanical performance. In the present work, additively manufactured (AM) 316 L samples were subjected to shot peening with different parameters including the severe shot peening (SSP) procedure. The identical shot peening protocol was also applied to reference samples to evaluate the comparable response. Both the shot peened reference and AM samples were studied for residual stresses, surface topography, microhardness, and the corresponding microstructure. The results indicated, that SSP induced higher values of compressive residual stresses deeper into the samples. This was accompanied by reduced surface roughness, increased grain refinement depth, and higher microhardness near the surface. The SSP resulted in transformation of original austenite to martensite near the surface in the reference samples. ; Peer reviewed