People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Burnett, Tl
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Exploration of fs-laser ablation parameter space for 2D/3D imaging of soft and hard materials by tri-beam microscopycitations
- 2024Damage evolution in multilayer braided composite tubes under torsion studied by in-situ X-ray Computed Tomography (CT)
- 2024The role of cavitation in the toughening of elastomer nanocomposites reinforced with graphene nanoplateletscitations
- 2023Computational study of the geometrical influence of grain topography on short crack propagation in AA7XXX series alloyscitations
- 2023In situ observation of environmentally assisted crack initiation and short crack growth behaviour of new-generation 7xxx series alloys in humid aircitations
- 2022Large-scale serial sectioning of environmentally assisted cracks in 7xxx Al alloys using femtosecond Laser-PFIBcitations
- 2022Embedded 3D printing of Multi-material composites
- 2022Tailoring the microstructure of lamellar Ti3C2Tx MXene aerogel by compressive strainingcitations
- 2021X-ray Tomographic Observation of Environmental Assisted Cracking in Heat-treated Lean Duplex Stainless Steelcitations
- 2021Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloyscitations
- 2020Environmentally induced crack (EIC) initiation, propagation, and failure: A 3D in-situ time-lapse study of AA5083 H131citations
- 2020Redistribution of carbon caused by butterfly defects in bearing steelscitations
- 2020Tracking polycrystal evolution non-destructively in 3D by laboratory X-ray diffraction contrast tomographycitations
- 2020X-Ray Tomographic Characterisation of Pitting Corrosion in Lean Duplex Stainless Steelcitations
- 2019On the application of Xe+ plasma FIB for micro-fabrication of small-scale tensile specimenscitations
- 2019Initiation and short crack growth behaviour of environmentally induced cracks in AA5083 H131 investigated across time and length scalescitations
- 2019Completing the picture through correlative characterizationcitations
- 2018Atomic-Scale Insights into the Oxidation of Aluminumcitations
- 2018Multi-Modal Plasma Focused Ion Beam Serial Section Tomography of an Organic Paint Coatingcitations
- 2018Ductile Fracture Assessment of 304L Stainless Steel Using 3D X-ray Computed Tomographycitations
- 2018Realizing the theoretical stiffness of graphene in composites through confinement between carbon fiberscitations
- 2017Degradation of metallic materials studied by correlative tomographycitations
- 2017Time-lapse lab-based X-ray nano-CT study of corrosion damagecitations
- 2017Multiscale correlative tomography: an investigation of creep cavitation in 316 stainless steelcitations
- 2016Xe+ Plasma FIB: 3D Microstructures from Nanometers to Hundreds of Micrometerscitations
- 2015Large volume serial section tomography by Xe Plasma FIB dual beam microscopycitations
- 2014Correlative tomographycitations
- 2013Simultaneous measurement of X-ray powder diffraction and ferroelectric polarisation data as a function of applied electric field at a range of frequenciescitations
Places of action
Organizations | Location | People |
---|
article
Tracking polycrystal evolution non-destructively in 3D by laboratory X-ray diffraction contrast tomography
Abstract
The ability to accurately map crystal grain morphology and grain boundaries in polycrystalline materials, non-destructively and in three-dimensions is required for detailed investigations into many aspects of polycrystalline deformation, as well as many other properties. Previously, the laboratory-based X-ray diffraction contrast tomography technique (LabDCT) has been shown to be capable of reconstructing crystallographic orientations and grain centres in 3D. Here we demonstrate the extension of the method to the reconstruction of the individual 3D grain shapes. Firstly, the grain boundaries are mapped by DCT in a beta‑titanium alloy (Ti-β21S) sample and validated by independent measurements of the grain shapes obtained from phase contrast tomography. The independent validation measurements show that the boundaries can be located with a mean accuracy of 4.4 μm. Secondly, the grain locations and orientations in a copper powder sample sintered at 1050 °C are tracked over time in a time-lapse manner by LabDCT and then the final state compared and validated against destructive serial sectioning EBSD (3D-EBSD) post-mortem. In this case we are able to follow the recrystallisation and competitive grain growth over time, by visualising the migration of selected grain boundaries. In particular the shrinkage and dissolution of grains in the immediate vicinity of a fast-growing grain are observed and quantified in the light of changes in misorientation relationships with the growing grain. More generally, LabDCT can be used to characterise, track or establish realistic 3D image-based models of polycrystalline microstructures across a range of crystal structures.