People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zammit, Ann
University of Malta
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Multi-material stainless steel fabrication using plasma wire arc additive manufacturingcitations
- 2023Effect of laser shock peening on austempered ductile ironcitations
- 2020On restructuring the microstructure of Ti-6Al-7Nb alloy before surface engineeringcitations
- 2018Shot Peening of Austempered Ductile Ironcitations
Places of action
Organizations | Location | People |
---|
article
On restructuring the microstructure of Ti-6Al-7Nb alloy before surface engineering
Abstract
This paper focuses on the effect of heat treatment processes on the microstructure of medical-grade Ti-6Al-7Nb alloy, with an objective to acquire a globular microstructure suitable for subsequent surface treatment such as Laser Shock Peening (LSP). In this study, the titanium alloy samples initially received solution treatment at various temperatures between 800 °C to 1100 °C, followed by subsequent cooling carried out at different rates, ranging from furnace cool to water quench. A number of samples were then subject to ageing at 800 °C for either 2 h or 4 h. The microstructure revealed that alpha (α) martensite was formed on cooling after solution treatment from 980 °C which is a typical of bimodal microstructure. What is more, air cooling and furnace cooling for 2 h and 4 h were also conducted after solution treatment at 900 °C and 950 °C. A globular microstructure was formed with furnace cooling from both temperatures. Furthermore, adjacent grain crystallographic misorientation was characterized by Electron Backscatter Diffraction (EBSD). The results show that solution treatment at 950 °C for 4 h combined with subsequent furnace cooling is the best heat treatment for obtaining a globular microstructure with lowest misorientation. Additionally, after LSP, a gradient change in misorientation was formed as shown in the Kernel Average Map (KAM). This work not only offer a straightforward way to develop a globular microstructure, but also reveal the corresponding microstructure in Ti-6Al-7Nb alloy at various temperatures for future metallurgical research.