People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shukla, Pratik
University of Chester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023Effect of laser shock peening on austempered ductile ironcitations
- 2020On restructuring the microstructure of Ti-6Al-7Nb alloy before surface engineeringcitations
- 2019Residual stress, phase, microstructure and mechanical property studies of ultrafine bainitic steel through laser shock peeningcitations
- 2019Effect of laser shock peening on commercially pure titanium-1 weldment fabricated by gas tungsten arc welding techniquecitations
- 2019Altering the wetting properties of orthopaedic titanium alloy (Ti–6Al–7Nb) using laser shock peeningcitations
- 2019Shock-wave induced compressive stress on alumina ceramics by laser peeningcitations
- 2018Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminium alloy nanocomposites through laser shock processing for biomedical implant and engineering applicationscitations
- 2018Laser shock peening without coating induced residual stress distribution, wettability characteristics and enhanced pitting corrosion resistance of austenitic stainless steelcitations
- 2018Laser cleaning of grey cast iron automotive brake disc
- 2017Effect of Laser Shock Peening (LSP) on the Microstructure, Residual Stress State and Hardness of a Nickel based Superalloy
- 2017Improvement in mechanical properties of titanium alloy (Ti-6Al-7Nb) subject to multiple laser shock peeningcitations
- 2017Corrigendum to “Surface property modifications of silicon carbide ceramic following laser shock peening” [J. Eur. Ceram. Soc. 37 (9) (2017) 3027–3038]
- 2017Surface property modifications of silicon carbide ceramic following laser shock peeningcitations
- 2016Development in laser peening of advanced ceramiccitations
- 2016Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatmentcitations
- 2015Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response
- 2015Development in laser peening of advanced ceramicscitations
- 2015Modulating the wettability characteristics and bioactivity of polymeric materials using laser surface treatment
- 2014Investigation of temperature distribution during CO2 laser and fibre laser processing of a Si3N4 engineering ceramic by means of a computational and experimental approach
- 2014Laser Shock Peening and Mechanical Shot Peening Processes Applicable for the Surface Treatment of Technical Grade Ceramicscitations
- 2013Role of laser beam radiance in different ceramic processingcitations
- 2013Investigation of temperature distribution during CO2 and Fibre laser processing of Si3N4 engineering ceramic by means of a computational and experimental approach
- 2013Evaluation of surface cracks following processing of a ZrO2 advance ceramic with CO2 and fibre laser radiation
- 2013Evaluation of Surface Cracks following Processing of a ZrO2 Advance Ceramic with CO2 and Fibre laser Radiation
- 2011Influence of laser beam brightness during surface treatment of a ZrO 2 engineering ceramic
- 2010Surface characterization and compositional evaluation of a fibre laser processed silicon nitride (Si3N4) engineering ceramic
- 2010Analysis of temperature distribution during fibre laser surface treatment of a zirconia engineering ceramiccitations
- 2010Fracture toughness modifications by means of CO2 laser beam surface processing of a silicon nitride engineering ceramiccitations
- 2010Fracture toughness of a zirconia engineering ceramic and the effects thereon of surface processing with fibre laser radiationcitations
- 2010On the Establishment of an Appropriate Method for Evaluating the Residual Stresses after Laser Surface Treatment of ZrO2 and Si3N4 Engineering Ceramics’
- 2009Characterization and compositional study of fibre laser processed engineering ceramics
- 2009Laser surface treatment of engineering ceramics and the effects thereof on fracture toughness
Places of action
Organizations | Location | People |
---|
article
On restructuring the microstructure of Ti-6Al-7Nb alloy before surface engineering
Abstract
This paper focuses on the effect of heat treatment processes on the microstructure of medical-grade Ti-6Al-7Nb alloy, with an objective to acquire a globular microstructure suitable for subsequent surface treatment such as Laser Shock Peening (LSP). In this study, the titanium alloy samples initially received solution treatment at various temperatures between 800 °C to 1100 °C, followed by subsequent cooling carried out at different rates, ranging from furnace cool to water quench. A number of samples were then subject to ageing at 800 °C for either 2 h or 4 h. The microstructure revealed that alpha (α) martensite was formed on cooling after solution treatment from 980 °C which is a typical of bimodal microstructure. What is more, air cooling and furnace cooling for 2 h and 4 h were also conducted after solution treatment at 900 °C and 950 °C. A globular microstructure was formed with furnace cooling from both temperatures. Furthermore, adjacent grain crystallographic misorientation was characterized by Electron Backscatter Diffraction (EBSD). The results show that solution treatment at 950 °C for 4 h combined with subsequent furnace cooling is the best heat treatment for obtaining a globular microstructure with lowest misorientation. Additionally, after LSP, a gradient change in misorientation was formed as shown in the Kernel Average Map (KAM). This work not only offer a straightforward way to develop a globular microstructure, but also reveal the corresponding microstructure in Ti-6Al-7Nb alloy at various temperatures for future metallurgical research.