Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ventura, Pascal

  • Google
  • 2
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Crystallographic texture and velocities of ultrasonic waves in a Ni-based superalloy manufactured by laser powder bed fusion14citations
  • 2013Original coupled FEM/BIE numerical model for analyzing infinite periodic surface acoustic wave transducers3citations

Places of action

Chart of shared publication
Leymarie, Nicolas
1 / 8 shared
Germain, Lionel
1 / 33 shared
Hazotte, Alain
1 / 32 shared
Khabouchi, Amal
1 / 1 shared
Pierre, Dufilié
1 / 1 shared
Hecht, Frédéric
1 / 1 shared
Chart of publication period
2020
2013

Co-Authors (by relevance)

  • Leymarie, Nicolas
  • Germain, Lionel
  • Hazotte, Alain
  • Khabouchi, Amal
  • Pierre, Dufilié
  • Hecht, Frédéric
OrganizationsLocationPeople

article

Crystallographic texture and velocities of ultrasonic waves in a Ni-based superalloy manufactured by laser powder bed fusion

  • Leymarie, Nicolas
  • Ventura, Pascal
  • Germain, Lionel
  • Hazotte, Alain
  • Khabouchi, Amal
Abstract

This study investigated the mechanisms of formation of the microstructure and texture of an Inconel 625 manufactured by additive manufacturing, using laser-based powder bed fusion. The resulting texture has a quadratic symmetry and a composite organization of grains. Some elongated grains have their 〈100〉 aligned along the build-up direction and grow from the middle of the melt pool, whereas the others are inclined with a lower texture. This is explained on the basis of usual solidification mechanisms. The overall texture is not very pronounced (texture index of 1.24) but sufficient to influence ultrasound wave propagation in a measurable manner. The difference is the most pronounced between the slow and fast quasi transverse waves. The contribution of two main factors influencing the anisotropy, namely the anisotropy of the single crystal and the shape of the grains, are discussed in the paper.

Topics
  • impedance spectroscopy
  • single crystal
  • grain
  • melt
  • composite
  • selective laser melting
  • texture
  • ultrasonic
  • electron backscatter diffraction
  • solidification
  • superalloy
  • aligned