People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bechade, Jl
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
In-situ time-resolved study of structural evolutions in a zirconium alloy during high temperature oxidation and cooling
Abstract
In-situ time-resolved Synchrotron X-ray diffraction analyses were performed on zirconium alloy (Zircaloy-4) sheet samples, during their heating, isothermal oxidation at 700, 800 and 900 degrees C under a flowing mixture of He and O-2 and cooling. The oxide growth and the evolution of the oxide structure as a function of time and temperature were studied with suitable time resolution. Oxide layer thicknesses of approximately 10 mu m were formed during the experiments. The incident X-rays penetrated the whole oxide thickness. The samples were examined after the experiments by field emission gun scanning electron microscopy, electron backscatter diffraction and electron-probe microanalysis. The results showed that the oxide contains a mixture of monoclinic and tetragonal zirconia evolving during heating, oxidation and cooling. The average volume fraction of tetragonal zirconia decreases during oxidation. This fraction is larger at 900 degrees C than at 700 and 800 degrees C. For oxide layers thinner than approximately 5 mu m, this fraction is larger at 800 degrees C than at 700 degrees C, but it is rather equivalent for both temperatures when the oxide thickness ranges between 5 and 8 mu m. Some of the tetragonal zirconia crystals transforms into the monoclinic phase during cooling after oxidation. This fraction of transformed tetragonal zirconia is larger after oxidation at 900 degrees C than after oxidation at 700 and 800 degrees C. It is suggested that these evolutions of the oxide crystallographic structure are related to micro-stresses and to temperature dependences of the critical size of zirconia crystals below which tetragonal zirconia is stabilized.