Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saar, R.

  • Google
  • 2
  • 12
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers29citations
  • 2014Shape Restoration Effect in Ag-SiO2 Core-Shell Nanowires27citations

Places of action

Chart of shared publication
Dorogin, Leonid
2 / 5 shared
Umalas, M.
1 / 1 shared
Vlassov, S.
2 / 3 shared
Polyakov, B.
2 / 3 shared
Saal, K.
1 / 1 shared
Vahtrus, M.
2 / 2 shared
Tamme, M.
1 / 1 shared
Lohmus, R.
2 / 3 shared
Mets, M.
1 / 1 shared
Antsov, M.
1 / 2 shared
Romanov, Ae
1 / 1 shared
Lohmus, A.
1 / 1 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Dorogin, Leonid
  • Umalas, M.
  • Vlassov, S.
  • Polyakov, B.
  • Saal, K.
  • Vahtrus, M.
  • Tamme, M.
  • Lohmus, R.
  • Mets, M.
  • Antsov, M.
  • Romanov, Ae
  • Lohmus, A.
OrganizationsLocationPeople

article

Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers

  • Dorogin, Leonid
  • Umalas, M.
  • Vlassov, S.
  • Polyakov, B.
  • Saal, K.
  • Vahtrus, M.
  • Tamme, M.
  • Saar, R.
  • Lohmus, R.
Abstract

We investigate the applicability of alumina nanofibers as a potential reinforcement material in ceramic matrix compounds by comparing the mechanical properties of individual nanofibers before and after annealing at 1400 °C. Mechanical testing is performed inside a scanning electron microscope (SEM), which enables observation in real time of the deformation and fracture of the fibers under loading, thereby providing a close-up inspection of the freshly fractured area in vacuum. Improvement of both the Young's modulus and the breaking strength for annealed nanofibers is demonstrated. Mechanical testing is supplemented with the structural characterization of the fibers before and after annealing using SEM, transmission electron microscopy and X-ray diffraction methods.

Topics
  • impedance spectroscopy
  • compound
  • scanning electron microscopy
  • x-ray diffraction
  • strength
  • transmission electron microscopy
  • annealing
  • ceramic
  • diffraction method