Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Frias, João P. G. L.

  • Google
  • 1
  • 7
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Microplastics in beach sediments of the Azores archipelago, NE Atlantic8citations

Places of action

Chart of shared publication
Antunes, Joana
1 / 3 shared
Duncan, Emily M.
1 / 1 shared
Pham, Christopher K.
1 / 1 shared
Rodrigues, Clara
1 / 1 shared
Rodríguez, Yasmina
1 / 1 shared
Carriço, Rita
1 / 1 shared
Sobral, Paula
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Antunes, Joana
  • Duncan, Emily M.
  • Pham, Christopher K.
  • Rodrigues, Clara
  • Rodríguez, Yasmina
  • Carriço, Rita
  • Sobral, Paula
OrganizationsLocationPeople

article

Microplastics in beach sediments of the Azores archipelago, NE Atlantic

  • Frias, João P. G. L.
  • Antunes, Joana
  • Duncan, Emily M.
  • Pham, Christopher K.
  • Rodrigues, Clara
  • Rodríguez, Yasmina
  • Carriço, Rita
  • Sobral, Paula
Abstract

<p>Oceanic islands are exposed to plastic debris that has accumulated in the open ocean, particularly in the subtropical gyres. This study investigates the abundance and typology of microplastics (from 0.1 to 5 mm) on 19 sandy beaches spread across 8 oceanic islands of the Azores archipelago. Between January and April 2016, a total of 341 particles retrieved from all beaches, were identified as microplastics. The highest concentration (50.19 ± 21.93 particles kg<sup>−1</sup> dw) was found in Terceira Island. Beach morphology and grain size were important factors explaining microplastic concentration. Fibres were the most dominant morphology recovered (80.9 %), followed by fragments (12.3 %). Fourier transform infrared spectroscopy (FTIR) revealed that 41 % of the fibres consisted of polyester and 60 % of the fragments were polyethylene. This research underlines the widespread contamination of microplastics in oceanic islands of the Atlantic Ocean.</p>

Topics
  • morphology
  • polymer
  • grain
  • grain size
  • Fourier transform infrared spectroscopy