Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Watson, Nicholas

  • Google
  • 1
  • 4
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Linking the yield stress functionality of polyglycerol polyricinoleate in a highly filled suspension to its molecular properties10citations

Places of action

Chart of shared publication
Gray, David
1 / 3 shared
Vieira, Joselio
1 / 1 shared
Wolf, Bettina
1 / 5 shared
Price, Ruth
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Gray, David
  • Vieira, Joselio
  • Wolf, Bettina
  • Price, Ruth
OrganizationsLocationPeople

article

Linking the yield stress functionality of polyglycerol polyricinoleate in a highly filled suspension to its molecular properties

  • Gray, David
  • Vieira, Joselio
  • Wolf, Bettina
  • Price, Ruth
  • Watson, Nicholas
Abstract

Polyglycerol polyricinoleate (PGPR) is a food emulsifier with a unique yield stress reducing efficacy in fat-based suspensions. There are many commercially available PGPRs, and the different products vary in their impact on the yield stress. Choosing the right PGPR for a specific formulation is often based on empirical data and the experience of the formulator. Lack of fundamental understanding of why these differences exist hampers reformulation efforts to replace PGPR. Therefore, this study aimed to link the yield stress reducing efficacy of PGPR to its molecular properties. Five commercial PGPR samples were studied (3 g/kg) in a concentrated suspension of icing sugar (650 g/kg, ≈ 530 mL/L) in sunflower oil (with naturally-occurring surface-active molecules removed). Rheological analysis revealed Herschel-Bulkley yield stress variations of between 0.90 ± 0.06 Pa and 1.90 ± 0.18 Pa, compared to 57.6 ± 15.8 Pa in the absence of PGPR. Yield stress was correlated to critical micelle concentration, obtained from oil-water interfacial tension data. Applying molecularcharacterisation techniques revealed that the presence of a hydroxyl group on the fatty acid at the end of the polyricinoleate estolide chain could be linked to inferior yield stress reducing efficacy.

Topics
  • impedance spectroscopy
  • surface