People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Herazo, Cristina Isabel Castro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Isolation of cellulose microfibers and nanofibers by mechanical fibrillation in a water-free solventcitations
- 2023The Evolution and Future Trends of Unsaturated Polyester Biocompositescitations
- 2021Phase distribution changes of neat unsaturated polyester resin and their effects on both thermal stability and dynamic-mechanical propertiescitations
- 2019Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicinecitations
- 2017Physical Characterization of Bacterial Cellulose Produced by Komagataeibacter medellinensis Using Food Supply Chain Waste and Agricultural By-Products as Alternative Low-Cost Feedstockscitations
- 2017Influence of tribological test on the global conversion of natural compositescitations
- 2017Effect of molecular weight reduction by60Co irradiation and polymer concentration in chitosan coating surface properties in relation to the surface properties of red tilapia (oreochromis spp.)
- 2015Highly percolated poly(vinyl alcohol) and bacterial nanocellulose synthesized in situ by physical-crosslinkingcitations
- 2014Wettability of gelatin coating formulations containing cellulose nanofibers on banana and eggplant epicarpscitations
- 2014In situ production of nanocomposites of poly(vinyl alcohol) and cellulose nanofibrils from Gluconacetobacter bacteriacitations
- 2014Synthesis of thermoplastic starch-bacterial cellulose nanocomposites via in situ fermentationcitations
- 2013Bacterial cellulose nanocomposites developed by in-situ fermentation
- 2012Biodegradability of Banana and Plantain Cellulose Microfibrils Films in Anaerobic Conditionscitations
- 2012Surface free energy of films of alkali-treated cellulose microfibrils from banana rachiscitations
- 2007Determinación de condiciones óptimas para el tratamiento alcalino de fibras de fique empleadas como reforzantes de materiales compuestos
Places of action
Organizations | Location | People |
---|
article
Wettability of gelatin coating formulations containing cellulose nanofibers on banana and eggplant epicarps
Abstract
<p>An important physical parameter used to characterize the adhesive properties of the coating formulation is the surface free energy (SFE), which is a key parameter of the wetting capacity of a food surface. The objective of this work was to determine the effects of the concentrations of gelatin (0.6-2 g/100mL), glycerol (10-20g/100g) and nanofiber cellulose (1-5g/100g) on the wettability of gelatin-based edible coatings on banana and eggplant epicarps, and apply the response surface method to optimize the coating formulation. The SFE of banana and eggplant epicarp was calculated by Zisman plot and acid-base methods. Spreading coefficients of the coating formulations were determined on both epicarps. Banana epicarp was more hydrophilic than eggplant epicarp, but both surfaces are a low-energy surfaces and slightly bipolar. The cohesive energy of the coating formulations was influenced significantly by gelatin and cellulose nanofiber concentrations. For both epicarps, addition of glycerol and cellulose nanofibers enhanced the wetting of coating formulations based on gelatin. The best formulations in which the spreading coefficient of coating formulations on banana and eggplant epicarps reached a maximum of-22.44mNm<sup>-1</sup> and-32.95mNm<sup>-1</sup>, respectively.</p>