Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rezvannasab, Gh

  • Google
  • 1
  • 2
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Natural clay membranes12citations

Places of action

Chart of shared publication
Asadnia, Mohsen
1 / 31 shared
Foorginezhad, S.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Asadnia, Mohsen
  • Foorginezhad, S.
OrganizationsLocationPeople

article

Natural clay membranes

  • Asadnia, Mohsen
  • Foorginezhad, S.
  • Rezvannasab, Gh
Abstract

<p>In this study, we fabricated low-cost, sustainable inorganic membranes using a one-step dry compaction process that incorporates natural clay and edible glycerin, followed by sintering at low temperatures. Open porosity and permeability of the membranes were in the 33.6–45.2 % and 621.74–864.7 l/m<sup>2</sup>.h.bar range, respectively. Regarding molecular weight cut-off (MWCO) and mercury porosity of membranes with 33.6 % and 45.2 % porosity, the average pore size of the former was ~10 nm, while it was increased up to 10–70 nm, 0.9–3 μm, and ~ 10 μm for the latter. The membranes were subjected to filtration for dye solutions, coal mine washery waste, and aquaculture wastewater, resulting in remarkable removal efficiencies. Specifically, the membranes achieved removal rates of 99.8 % for direct blue 71, 92.44 % for disperse red 74, and 99.1 % for red 2G in dye solutions. Furthermore, they demonstrated removal efficiencies of 99.19 % for turbidity and 94.2 % for chemical oxygen demand (COD) in coal mine washery waste. The membranes removed 98.5 % of total suspended solids from the fish farm effluent. During extended periods of operation, the clay membrane exhibited remarkable stability and minimal leaching of metal ions. Superior properties, including low-cost, nontoxic, and accessible precursors, one-step uni-axial fabrication process without the need for lubricant and plasticizer, low sintering temperature compared to commercial ceramic membranes, promising long-term chemical stability in highly acidic and alkaline media, recyclability, and reproducibility, make the as-prepared membranes an affordable and sustainable solution for treating wastewater in various industries, including textile, mining, and aquaculture, thereby mitigating the environmental impact of these industries.</p>

Topics
  • pore
  • Oxygen
  • chemical stability
  • permeability
  • leaching
  • porosity
  • ceramic
  • molecular weight
  • sintering
  • Mercury