Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sabir, Aneela

  • Google
  • 1
  • 2
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Polyamide intercalated nanofiltration membrane modified with biofunctionalized core shell composite for efficient removal of Arsenic and Selenium from wastewater50citations

Places of action

Chart of shared publication
Khan, Rafi Ullah
1 / 4 shared
Shafiq, Muhammad
1 / 6 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Khan, Rafi Ullah
  • Shafiq, Muhammad
OrganizationsLocationPeople

article

Polyamide intercalated nanofiltration membrane modified with biofunctionalized core shell composite for efficient removal of Arsenic and Selenium from wastewater

  • Khan, Rafi Ullah
  • Shafiq, Muhammad
  • Sabir, Aneela
Abstract

Novel nanofiltration polyamide core shell bio functionalized matrix membrane was developed by dissolution casting methodology for the decontamination of Arsenic (As) and Selenium (Se) ions. Five different polyamide core shell biofunctionalized (PA-CSBF) matrix membranes were blended with varying quantity of C-S BF nanoparticles (10−50 mg). Functional group analysis, thermal stability, charge density, hydrophilicity, surface morphology and membrane roughness were analyzed by Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analyzer (TGA), Zeta potential, contact angle measurement, Scanning electron microscopy (SEM) and Atomic force microscopy (AFM), respectively. The prepared membranes modified with core shell biofunctionalized (C-SBF) nanoparticles were compared with the control membrane in terms of membrane structures and separation performance. The novel modified PA-CSBF membranes showed improved pure water permeability and rejections for As(lll) and Se ions due to their enhanced hydrophilicity. PA-CSBF4 membrane (40 mg C-S BF content) showed outstanding regeneration performance and found an optimum membrane with 99 % and 98 % rejection of As(lll) and Se ions, at permeate flux of 444 L/m2 h, respectively.

Topics
  • nanoparticle
  • density
  • surface
  • scanning electron microscopy
  • atomic force microscopy
  • composite
  • thermogravimetry
  • permeability
  • casting
  • Fourier transform infrared spectroscopy
  • Arsenic