Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Delayre, Charli

  • Google
  • 1
  • 4
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Quantitative evolution of the petrophysical properties of andesites affected by argillic alteration in the hydrothermal system of Petite Anse-Diamant, Martinique10citations

Places of action

Chart of shared publication
Cosenza, Philippe
1 / 6 shared
Mas, Patricia Patrier
1 / 1 shared
Thomas, Anthony
1 / 4 shared
Sardini, Paul
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Cosenza, Philippe
  • Mas, Patricia Patrier
  • Thomas, Anthony
  • Sardini, Paul
OrganizationsLocationPeople

article

Quantitative evolution of the petrophysical properties of andesites affected by argillic alteration in the hydrothermal system of Petite Anse-Diamant, Martinique

  • Cosenza, Philippe
  • Mas, Patricia Patrier
  • Thomas, Anthony
  • Delayre, Charli
  • Sardini, Paul
Abstract

The evolution of the petrophysical properties of rocks induced by hydrothermal alteration is often considered qualitatively by sorting the hydrothermal alterations encountered from low to high intensity, depending on the identified mineral paragenesis. In this paper, we studied the evolution of three different petrophysical properties (connected porosity, permeability and electrical conductivity) as a function of the argillization degree of andesites affected by argillic alteration identified in the caprock formation of the Petite Anse-Diamant hydrothermal system in Martinique. These petrophysical measurements were supplemented by quantitative mineral evaluation via scanning electron microscopy (i.e., the Quantitative Evaluation of Minerals by Scanning electron microscopy or the QEMSCAN® method), connected porosity mapping using 14C-PMMA method and measurements of methylene blue (MB) values and structural water proportions (H2O+). In the series of rocks investigated, an increasing trend of clay mineral abundances (montmorillonite and kaolinite) from 5.68 to 37.56% was revealed by the QEMSCAN® method. Based on the quantitative results, the structural water proportions were used as a proxy of argillic alteration progression. Comparison between the mineral maps provided by the QEMSCAN® system and connected porosity mapping observed in autoradiographs using 14C-PMMA method revealed a good correlation with clay mineral phases, dissolution vugs and fractures. The connected porosities evaluated with the triple weight method range from 3.74 to 35.35% and show a good correlation (R2 = 0.8835) with the H2O+ values, revealing that porosity development is mainly due to the replacement of primary phases by clay minerals. In contrast, the crystallization of silica, carbonates and, to a lesser extent, iron oxides tends to clog connected pores, inducing a local decrease in connected porosity, as revealed in autoradiographs. The Darcian permeability ranges from 7.66∙10−20 to 5.36∙10−17 m2 and shows a moderate correlation with the connected porosity. The bulk electrical conductivity measured as a function of the conductivity of the saturating solution reveals the significant contribution of surface conduction arising from montmorillonite. At a pore fluid salinity of 2 wt% (the salinity of the Eaux Ferrées thermal spring), the bulk electrical conductivity shows a relatively good correlation with the H2O+ values (R2 = 0.8591) and an even better correlation with the MB values (R2 = 0.9579). The contribution of montmorillonite to the bulk electrical conductivity was estimated with the use of the isoconductivity point, showing an increase in the BM values and a strong correlation (R2 = 0.9806).

Topics
  • impedance spectroscopy
  • pore
  • mineral
  • surface
  • phase
  • scanning electron microscopy
  • permeability
  • iron
  • porosity
  • electrical conductivity
  • crystallization