Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Magueresse, Thibaut Le

  • Google
  • 1
  • 3
  • 53

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Sparse acoustical holography from iterated Bayesian focusing53citations

Places of action

Chart of shared publication
Leclere, Quentin
1 / 12 shared
Antoni, Jérôme
1 / 9 shared
Simard, Patrice
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Leclere, Quentin
  • Antoni, Jérôme
  • Simard, Patrice
OrganizationsLocationPeople

article

Sparse acoustical holography from iterated Bayesian focusing

  • Leclere, Quentin
  • Antoni, Jérôme
  • Magueresse, Thibaut Le
  • Simard, Patrice
Abstract

In a previous work, an attempt was made to give a unified view of some acoustic holographic methods within a Bayesian framework. One advantage of the so-called “Bayesian Focusing” approach is to introduce an aperture function that acts like a lens and thus significantly improves the reconstruction results in terms of spatial resolution, but also of quantification over a larger frequency interval than allowed by conventional methods. This is particularly remarkable when the aperture function is allowed to become very narrow as in the case of sparse sources. The aim of the present paper is to demonstrate that the aperture function – which was previously manually tuned by the user – can be automatically estimated, together with the source distribution, in the same inverse problem. The principle is to use the current estimate of the source distribution to update the aperture function in the next iteration. The resulting algorithm is an iterated version of Bayesian Focusing, which can be formalized as an Expectation-Maximization algorithm with proved convergence. The proof of convergence is based on modeling the aperture function as a random quantity, which assigns the source coefficients with prior probability distribution in the form of a “scale mixture of Gaussians” that enforces sparse solutions. Various types of sparsity enforcing priors can thus be constructed, in a much richer setting than the usual ℓ1 penalized approach, leading to different updating rules of the aperture function. Some immediate byproducts of iterating Bayesian Focusing are 1) to provide a technique for the automatic setting of the regularization parameter, 2) to apply on the cross-spectral matrix of the measurements, and 3) to easily allow the grouping of frequencies for the broadband analysis of sources that are stationary in space. Experimental results confirm that sparse holography improves the reconstruction of sources not only in terms of localization, but also of quantification and of directivity in a frequency range considerably enlarged as compared to classical methods. These improvements can be achieved even with regular arrays, provided that sparser priors than those leading to the standard ℓ1 penalization are used.

Topics
  • impedance spectroscopy
  • random