Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boström, H. L. B.

  • Google
  • 2
  • 11
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Ferroic multipolar order and disorder in cyanoelpasolite molecular perovskites14citations
  • 2018Uniaxial negative thermal expansion and metallophilicity in Cu3[Co(CN)6]11citations

Places of action

Chart of shared publication
Simonov, Arkadiy
1 / 3 shared
Gray, H. J.
1 / 1 shared
Goodwin, Andrew
1 / 5 shared
Bulled, J. M.
1 / 1 shared
Coates, C. S.
2 / 2 shared
Sapnik, Af
1 / 11 shared
Goodwin, A. L.
1 / 1 shared
Liu, X.
1 / 54 shared
Overy, A. R.
1 / 1 shared
Reynolds, E. M.
1 / 1 shared
Tkatchenko, A.
1 / 2 shared
Chart of publication period
2019
2018

Co-Authors (by relevance)

  • Simonov, Arkadiy
  • Gray, H. J.
  • Goodwin, Andrew
  • Bulled, J. M.
  • Coates, C. S.
  • Sapnik, Af
  • Goodwin, A. L.
  • Liu, X.
  • Overy, A. R.
  • Reynolds, E. M.
  • Tkatchenko, A.
OrganizationsLocationPeople

article

Uniaxial negative thermal expansion and metallophilicity in Cu3[Co(CN)6]

  • Sapnik, Af
  • Goodwin, A. L.
  • Liu, X.
  • Boström, H. L. B.
  • Coates, C. S.
  • Overy, A. R.
  • Reynolds, E. M.
  • Tkatchenko, A.
Abstract

<p>We report the synthesis and structural characterisation of the molecular framework copper(I) hexacyanocobaltate(III), Cu<sub>3</sub>[Co(CN)<sub>6</sub>], which we find to be isostructural to H<sub>3</sub>[Co(CN)<sub>6</sub>] and the colossal negative thermal expansion material Ag<sub>3</sub>[Co(CN)<sub>6</sub>]. Using synchrotron X-ray powder diffraction measurements, we find strong positive and negative thermal expansion behaviour respectively perpendicular and parallel to the trigonal crystal axis: α<sub>a</sub>=25.4(5)MK<sup>−1</sup> and α<sub>c</sub>=−43.5(8)MK<sup>−1</sup>. These opposing effects collectively result in a volume expansivity α<sub>V</sub>=7.4(11)MK<sup>−1</sup> that is remarkably small for an anisotropic molecular framework. This thermal response is discussed in the context of the behaviour of the analogous H- and Ag-containing systems. We make use of density-functional theory with many-body dispersion interactions (DFT + MBD) to demonstrate that Cu<sup>+</sup>…Cu<sup>+</sup> metallophilic (‘cuprophilic’) interactions are significantly weaker in Cu<sub>3</sub>[Co(CN)<sub>6</sub>] than Ag<sup>+</sup>…Ag<sup>+</sup> interactions in Ag<sub>3</sub>[Co(CN)<sub>6</sub>], but that this lowering of energy scale counterintuitively translates to a more moderate—rather than enhanced—degree of structural flexibility. The same conclusion is drawn from consideration of a simple GULP model, which we also present here. Our results demonstrate that strong interactions can actually be exploited in the design of ultra-responsive materials if those interactions are set up to act in tension.</p>

Topics
  • density
  • impedance spectroscopy
  • dispersion
  • theory
  • anisotropic
  • copper
  • thermal expansion
  • density functional theory
  • Ag-containing