People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Zhi-Peng
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2011Superstructure formation and variation in Ni-GDC cermet anodes in SOFCcitations
- 2011Direct evidence of dopant segregation in Gd-doped ceriacitations
- 2011The diffusions and associated interfacial layer formation between thin film electrolyte and cermet anode in IT-SOFCcitations
- 2011Diffusion and segregation along grain boundary at the electrolyte–anode interface in IT-SOFCcitations
- 2011Two types of diffusions at the cathode/electrolyte interface in IT-SOFCscitations
- 2011Mutual diffusion occurring at the interface between La0.6Sr0.4Co0.8Fe0.2O3 cathode and Gd-doped ceria electrolyte during IT-SOFC cell preparationcitations
- 2011Mutual diffusion and microstructure evolution at the electrolyte−anode interface in intermediate temperature solid oxide fuel cellcitations
Places of action
Organizations | Location | People |
---|
article
Two types of diffusions at the cathode/electrolyte interface in IT-SOFCs
Abstract
Analytical transmission electron microscopy, in particular with the combination of energy dispersive X-ray spectroscopy (EDX) and electron energy-loss spectroscopy (EELS), has been performed to investigate the microstructure and microchemistry of the interfacial region between the cathode (La0.6Sr0.4Co0.8Fe0.2O3, LSCF) and the electrolyte (Gd-doped ceria, GDC). Two types of diffusions, mutual diffusion between cathode and electrolyte as well as the diffusion along grain boundaries, have been clarified. These diffusions suggest that the chemical stability of LSCF and GDC are not as good as previously reported. The results are more noteworthy if we take into consideration the fact that such interdiffusions occur even during the sintering process of cell preparation. (C) 2011 Elsevier Inc. All rights reserved.